
Variables, Types, and Operations
Last updated on 2024-08-05 | Edit this page

Download Chapter PDF

Download Chapter notebook (ipynb)

Mandatory Lesson Feedback Survey

The 'print' FunctionThe 'print' Function

OVERVIEW

Questions

What are input and output (I/O) operations?

What do variables do?

Why are types and scopes of variables important?

What types of operations are used?

Objectives

Understanding I/O operations

Build concepts of different types of variables

Learning about type conversions and scope

Understanding mathematical and logical operations

Basic Python

https://github.com/LearnToDiscover/Basic_Python/edit/main/episodes/02-input_output.Rmd
https://github.com/LearnToDiscover/Basic_Python/edit/main/episodes/02-input_output.Rmd
http://127.0.0.1:7480/02-input_output.pdf
http://127.0.0.1:7480/02-input_output.ipynb
https://docs.google.com/forms/d/e/1FAIpQLSdr0capF7jloJhPH3Pki1B3LZoKOG16poOpuVJ7SL2LkwLHQA/viewform?pli=1
https://www.youtube.com/watch?v=Qr-UBp_AeDA

Basic Python OperationsBasic Python Operations

Logical ExpressionsLogical Expressions

In programming, we process data and produce outputs. When data is being processed, it is stored in memory so that it is readily available, and
can therefore be subject to the processes we want to apply.

In this lesson, we will discuss how to handle data in Python. We will start by displaying data on the screen, and understand how to receive input
from a user. We can then use these techniques to perform different mathematical and logical operations. We will also cover the fundamental
principles employed every time we code in Python. It is imperative that you understand everything before moving on.

I/O Operations
In computer science, input or output operations refer to the communication between an information processing system such as a computer, and
the outside world, which may be a user or even another computer. Such communications are more commonly known as I/O operations. In
general, this ‘outside world’ may be loosely de�ned as anything that falls outside of the coding environment.

Only what we de�ne within the environment and what we store in the memory is directly controlled by our application. We may access
or take control over other environments, however, these interactions are classi�ed as I/O operations. An example of this is interacting
with a �le on our computer. While we have complete control over a �le while working on it (e.g. reading from it or writing to it), the
access to the �le and the transmission of data is in fact controlled and managed not by the programming environment but by the
operating system of the computer.

REMEMBER

https://www.youtube.com/watch?v=rCwBVf4_XjM
https://www.youtube.com/watch?v=ht6MSOg0JeA

In programming, I/O operations include, but are not limited to:

Displaying the results of a calculation

Requiring the user to enter a value

Writing or reading data to and from a �le or a database

Downloading data from the Internet

Operating a hardware (such as a robot, for example)

If you are interested in learning more about I/O systems and how they are handled at operating system level, you might bene�t from
chapter 13 of Operating Systems Concepts, 10 ed. by Abraham Silberschatz, Greg Gagne, and Peter Galvin.

I/O Operations in Python
Input and Output

In this section, we learn about two fundamental methods of I/O operations in Python. We will be using these methods throughout the course, so
it is essential that you feel comfortable with them and the way they work before moving on.

ADVANCED TOPIC

th

https://os.ecci.ucr.ac.cr/slides/Abraham-Silberschatz-Operating-System-Concepts-10th-2018.pdf
https://os.ecci.ucr.ac.cr/slides/Abraham-Silberschatz-Operating-System-Concepts-10th-2018.pdf
https://docs.python.org/3/tutorial/inputoutput.html

Print

The term output in reference to an application typically refers to data that has either been generated or manipulated by that
application.

For example; calculating the sum of two numbers. The action of calculating the sum is itself a mathematical operation. The result of our
calculation is called its output. Once we obtain the result, we might want to save it in a �le or display it on the screen, in which case we
will be performing an I/O operation. I/O operation.

The simplest and most frequently used method for generating output in almost every modern programming language is to display
something on the screen. We recommend using Jupyter Notebooks to run our Python scripts, which defaults to displaying the output of
a code cell beneath the code itself. We will start by calling a dedicated built-in function named print() .

In programming, a function is essentially an isolated piece of code. It usually accepts input, does something to or with this,
and produces output. A function can process input, often using several operations in a particular sequence or con�guration,
and process the input to give a �nal output. In Python programming syntax, a pair of (typically round) parentheses follows a
function, and these provide the function with the input arguments it needs when we call it, so that it can do what we intend, to
our data. We will explore functions in more details in Basic Python 4: Functions.

The print() function can take several inputs and performs different tasks. Its primary objective, however, is to take some values as
input and display them on the screen. Here is how it works:

Suppose we want to display some text in the Terminal. To do so, we write the following into a cell of our Jupyter Notebook (or on the
Terminal, a code editor or dedicated Integrated Development Environment (IDE)):

print('Welcome to L2D!!!')

This is now a fully functioning Python program that we can run using the Python interpreter.

If you are using an IDE (such as Mircosoft Visual Studio Code, for example) you must save the code in a �le with the extension .py, in
order to execute your code using the internal tools provided by that IDE. The speci�cs of how you do so depend on the IDE that you are
using.

.py Python scripts can also be executed manually. To do so, we open the Terminal in MacOS or Linux or the command prompt (CMD) in
Windows and navigate to the directory where we saved the script.

If you don’t know how to navigate in the Terminal, see the example in section How to use terminal environment? at the end of
this chapter.

Once in the correct directory, we run a script called script_a.py by typing python3 script_a.py in our Terminal as follows:

PRODUCING AN OUTPUT

REMEMBER

NOTE

https://docs.python.org/3/library/functions.html#print
http://127.0.0.1:7480/06-functions.html

This will call the Python 3 interpreter to execute the code we wrote in script_a.py. Once executed, we will see the output displayed in
the Terminal window.

In a Jupyter Notebook we can press the keyboard shortcut ‘shift+enter’ to execute the code in a cell. The output will be displayed below
the code cell.

You have now successfully written and executed your �rst program in Python.

We know that print() is a function because it ends with a pair of parentheses, and it is written entirely in lowercase characters PEP-
8: Function Names. Some IDEs change color when they encounter built-in functions, in order to signal to the user that the function is
recognised, and available to use, and so that we don’t accidentally overwrite them.

We can pass more than a single value to the print() function, provided that each value is separated from another, using a comma. For
instance, if we write the code below and run the script, the results would be as shown in output.

Notice that there is a space between ‘Hello’ and ‘John’ even though we did not include a space in our text. This is the default behaviour of the
print() function when it receives more than a single value (argument).

This default behaviour may be changed using a keyword argument called sep:

python3 script_a.py

BASH

Hello world!

OUTPUT

REMEMBER

print('Hello', 'John')

PYTHON

Hello John

OUTPUT

print('Hello', 'John', sep='')

PYTHON

HelloJohn

OUTPUT

https://www.python.org/dev/peps/pep-0008/#function-names
https://www.python.org/dev/peps/pep-0008/#function-names

Explanation of a function call

print('Hello', 'John', sep='--')

PYTHON

Hello--John

OUTPUT

print('Jane', 21, 'London', sep='.')

PYTHON

Jane.21.London

OUTPUT

Write code that displays the following output:

Protein Kinase C (Alpha subunit)

Solution

Terminal window on a Linux computer

PRACTICE EXERCISE 1

print('Protein Kinase C (Alpha subunit)')

PYTHON

Protein Kinase C (Alpha subunit)

OUTPUT

Terminal window on a Mac

Input

Inputs are I/O operations that involve receiving some data from the outside world. This might include reading the contents of a �le,
downloading something from the internet, or asking the user to enter a value.

The simplest way to acquire an input is to ask the user to enter a value in the Terminal. To do so, we use a dedicated built-in function
called input() .

In a Unix system (Mac OS or Linux), a tilde (~) is an alias that is used to refer to a user’s home directory.

This function takes a single argument called prompt. Prompt is the text displayed in the Terminal to ask the user for an input. Figure
Terminal window on a Linux computer and Terminal window on a Mac, illustrates a screen shot of an example PC’s prompt, where it
displays a user name (i.e. pouria) followed by a tilde (~). A Terminal prompt may be different in each computer and operating system.

Here is how we implement the input() function:

input('Please enter your name: ')

which is exactly the same as:

input(prompt='Please enter your name: ')

If we save one of the above in a notebook and execute it, we will see:

python3 script_b.py

Please enter your name: _

The Terminal cursor, displayed as an underscore in our example, will be in front of the prompt (i.e. 'Please enter your name: ')
waiting for a response. Once it receives a response, it will proceed to run the rest of the code (if any), or terminate the execution.

We may store the user’s response in a variable. Variables are the topic of the next episode in this learning material, where we shall also
review more examples on input() and how we can use it to produce results based on the responses we receive from the user.

RECEIVING AN INPUT

NOTE

https://docs.python.org/3/library/functions.html#input

Python is an interpreted language; this means that the code we write is executed by the Python interpreter one line at a time. The
input() function performs a blocking process. This means that the execution of the code by the Python interpreter is halted upon

encountering an input() function until the user enters a value. Once a value is entered, the interpreter then proceeds to execute the
next line.

Write a script that asks the user to enter the name of a protein in the Terminal.

Solution

input('Please enter the name of a protein: ')

Variables And Types
Variables are a type of data container, that we can use to store data to memory. Each variable has three main types of attribute: scope, name,
and type. Scope and name must be mutually unique. Starting with name, we will discuss each of these attributes in more details throughout this
chapter.

Variable names
PEP–8 Naming Conventions

The name that we give to a variable is, in fact, an alias for a location in the memory. You can think of it as a postbox, which is used as a
substitute for an actual address. Similarly, we use variable names so we don’t have to use the actual address to the location we want in the
memory; because it would look something like this 0x106fb8348.

There are some relatively simple rules to follow when de�ning variable names, which ultimately boil down to:

REMEMBER

PRACTICE EXERCISE 2

https://www.python.org/dev/peps/pep-0008/#naming-conventions

We should never overwrite an existing, built-in de�nition or identi�er (e.g. int or print). We will be learning many such de�nitions and
identi�ers as we progress through this course. Nonetheless, the Jupyter Notebook as well as any good IDE highlights syntaxes and built-
in identi�ers in different colours. In Jupyter, the default for built-in de�nitions is green. The exact colouring scheme depends on the IDE
being used, and the selected theme.

Once a variable is de�ned, its value may be altered or reset:

In Python, variables containing integer numbers are referred to as int, and those containing decimal numbers are referred to as float.

REMEMBER

total_items = 2

print(total_items)

PYTHON

2

OUTPUT

total_items = 3

print(total_items)

PYTHON

3

OUTPUT

Variables can contain data as characters as well; but to prevent Python from confusing them with meaningful commands, we use quotation
marks. So long as we remain consistent, it doesn’t matter whether we use single or double quotations. These data are known as string or str:

total_values = 3.2

print(total_values)

PYTHON

3.2

OUTPUT

temperature = 16.

print(temperature)

PYTHON

16.0

OUTPUT

forename = 'John'

surname = "Doe"

print('Hi,', forename, surname)

PYTHON

Hi, John Doe

OUTPUT

Oxidised low-density lipoprotein (LDL) receptor 1 mediates the recognition, internalisation and degradation of oxidatively modi�ed low-
density lipoprotein by vascular endothelial cells. Using the Universal Protein Resource (UniProt) website, �nd this protein for humans,
and identify:

UniProt entry number.

Length of the protein (right at the top).

Gene name (right at the top).

Store the information you retrieved, including the protein name, in within four separate variables.

Display the values of these four variables in one line, and separate the items with three spaces, as follows:

Name EntryNo GeneName Length

Solution

PRACTICE EXERCISE 3

name = 'Oxidised low-density lipoprotein (LDL) receptor 1'

uniprot_entry = 'P78380'

gene_name = 'OLR1'

length = 273

print(name, uniprot_entry, gene_name, length, sep=' ')

PYTHON

Oxidised low-density lipoprotein (LDL) receptor 1 P78380 OLR1 273

OUTPUT

https://beta.uniprot.org/

1. Write a Python code that upon execution, asks the user to enter the name of an enzyme and then stores the response in an
appropriately named variable.

2. Use the variable to display an output similar to the following:

ENZYME_NAME is an enzyme.

where ENZYME_NAME is the name of the enzyme entered in the prompt.

3. Now modify your script to prompt the user to enter the number of amino acids in that enzyme. Store the value in another
appropriately named variable.

4. Alter the output of your script to display a report in the following format:

ENZYME_NAME is an enzyme containing a total number of AMINO_ACIDS} amino acids.

where AMINO_ACIDS is the number of amino acids.

Solution

enzyme = input('Please enter the name of an enzyme: ')

print(enzyme, 'is an enzyme.')

length = input('How many amino acids does the enzyme contain? ')

print(enzyme, 'is an enzyme containing a total number of', length, 'amino acids.')

Variable Types
Built-in Types

When it comes to types, programming languages may be divided into two distinct categories:

Statically typed languages: these require the programmer to explicitly declare the type of each variable, and this type is checked
at compile time.

Dynamically typed languages: the type of the variable is determined at run time, and variables can change types on the �y. The
programmer is not required to explicitly de�ne the type of a variable: the language infers the type of the variable, once it is assigned
data.

Python is a dynamically typed language, and falls into this second category. This means that, unlike statically typed languages, we
rarely need to worry about the type de�nitions because in the majority of cases, Python takes care of them for us, and automatically
decodes the type of data being stored in a variable, once it is de�ned by the user.

PRACTICE EXERCISE 4

TYPES

https://docs.python.org/3/library/stdtypes.html

In a dynamically typed language, it is the value of a variable that determines the type. This is because the types are determined on the
�y by the Python interpreter as and when it encounters different variables and values.

In computer programming, type systems are syntactic methods to enforce and/or identify levels of abstraction. This means that type
systems take advantage of the syntax of a particular programming language, in order to enforce rules and identify types. This is
important, as it can manage abstraction in data, by ensuring that differing data types interact meaningfully with one another. An entire
�eld in computer science has been dedicated to the study of programming languages from a type–theoretic approach. This is primarily
due to the implication of types and their underlying principles in such areas in software engineering as optimisation and security. To
learn more about the study of type systems, refer to: Pierce B. Types and programming languages. Cambridge, Mass.: MIT Press; 2002.

The values determine the type of a variable in dynamically typed languages. This is in contrast to statically typed languages, where a
variable must be initialised using a speci�c type before a value.

Why learn about types in a dynamically typed programming language?

Python enjoys a powerful type system out of the box. The following table - Built-in types in Python - provides a comprehensive reference for the
built-in types in Python. Built-in types already exist in the language, and do not require the use or implementation of any third-party libraries.

A comprehensive (but non-exhaustive) reference of built-in (native) types in Python 3.
 Not discussed in this course — included for reference only.
dict is not an iterable by default, however, it is possible to iterate through its keys.

REMEMBER

ADVANCED TOPIC

NOTE

*

$

Mutability is an important concept in programming. A mutable object is an object whose value(s) may be altered. This will become clearer once
we study list and tuple. Find out more about mutability in Python from the documentation.

Complex numbers refer to a set of numbers that have both a real component, and an imaginary component; where the imaginary part is de�ned
as . These numbers are very useful in the study of oscillatory behaviours and �ow (e.g. heat, �uid, electricity). To learn more about complex
numbers, watch this Khan Academy video tutorial.

Sometimes we might need want to explicitly know what the type of a variable is. To do this, we can use the build-in function type() as follows:

−1
−−−

√

total_items = 2

print(type(total_items))

PYTHON

<class 'int'>

OUTPUT

total_values = 3.2

print(type(total_values))

PYTHON

<class 'float'>

OUTPUT

temperature = 16.

print(type(temperature))

PYTHON

<class 'float'>

OUTPUT

phase = 12.5+1.5j

print(type(phase))

PYTHON

<class 'complex'>

OUTPUT

https://en.wikipedia.org/wiki/Immutable_object
https://docs.python.org/3.9/reference/datamodel.html
http://thinkzone.wlonk.com/Numbers/NumberSets.htm
https://www.khanacademy.org/math/algebra2/introduction-to-complex-numbers-algebra-2/the-complex-numbers-algebra-2/v/complex-number-intro

In Python, a variable/value of a certain type may be referred to as an instance of that type. For instance, an integer value whose type in
Python is de�ned as int is said to be an instance of type int.

Determine and display the type for each of these values:

32

24.3454

2.5 + 1.5

“RNA Polymerase III”

0

.5 - 1

1.3e-5

3e5

The result for each value should be represented in the following format:

Value X is an instance of <class 'Y'>

full_name = 'John Doe'

print(type(full_name))

PYTHON

<class 'str'>

OUTPUT

REMEMBER

PRACTICE EXERCISE 5

Solution

value = 32

value_type = type(value)

print('Value', value, 'is an instance of', value_type)

PYTHON

Value 32 is an instance of <class 'int'>

OUTPUT

value = 24.3454

value_type = type(value)

print('Value', value, 'is an instance of', value_type)

PYTHON

Value 24.3454 is an instance of <class 'float'>

OUTPUT

value = 2.5 + 1.5

value_type = type(value)

print('Value', value, 'is an instance of', value_type)

PYTHON

Value 4.0 is an instance of <class 'float'>

OUTPUT

value = "RNA Polymerase III"

value_type = type(value)

print('Value', value, 'is an instance of', value_type)

PYTHON

Value RNA Polymerase III is an instance of <class 'str'>

OUTPUT

value = 0

value_type = type(value)

print('Value', value, 'is an instance of', value_type)

PYTHON

Value 0 is an instance of <class 'int'>

OUTPUT

value = .5 - 1

value_type = type(value)

print('Value', value, 'is an instance of', value_type)

PYTHON

Value -0.5 is an instance of <class 'float'>

OUTPUT

value = 1.3e-5

value_type = type(value)

print('Value', value, 'is an instance of', value_type)

PYTHON

Value 1.3e-05 is an instance of <class 'float'>

OUTPUT

value = 3e5

value_type = type(value)

print('Value', value, 'is an instance of', value_type)

PYTHON

Value 300000.0 is an instance of <class 'float'>

OUTPUT

Conversion of types

It is sometimes necessary to have the values returned by the input() function — i.e. the user’s response, in other types. Imagine the
following scenario:

“We ask our user to enter the total volume of their puri�ed protein, so that we can work out the amount of assay they need to conduct a
speci�c experiment. To calculate this assay volume using the volume of the puri�ed protein, we need to perform mathematical
calculations based on the response we receive from our user. It is not possible to perform mathematical operations on non-numeric
values. Therefore, we ought to somehow convert the type from str to a numeric type.”

The possibility of converting from one type to another depends entirely on the value, the source type, and the target type. For instance;
we can convert an instance of type str (source type) to one of type int (target type) if and only if the source value consists entirely of
numbers and there are no other characters.

To convert a variable from one type to another, we use the Type Name of the target type (as described in Table Built-in types in Python
and treat it as a function.

For instance, to convert a variable to integer, we:

look up the Type Name for integer from Table Built-in types in Python

then treat the Type Name as a function: int()

use the function to convert our variable: new_var = int(old_var)

Here is an example of how we convert types in Python:

WHY CONVERT TYPES?

REMEMBER

value_a = '12'

print(value_a, type(value_a))

PYTHON

12 <class 'str'>

OUTPUT

value_b = int(value_a)

print(value_b, type(value_b))

PYTHON

If we attempt to convert a variable that contains non-numeric values, a ValueError is raised:

12 <class 'int'>

OUTPUT

value_a = '12y'

print(value_a, type(value_a))

PYTHON

12y <class 'str'>

OUTPUT

value_b = int(value_a)

PYTHON

ValueError: invalid literal for int() with base 10: '12y'

OUTPUT

In programming, we routinely face errors resulting from different mistakes. The process of �nding and correcting such mistakes in the
code is referred to as debugging.

We have been given the following piece of code written in Python:

value_a = 3

value_b = '2'

result = value_a + value_b

print(value_a, '+', value_b, '=', result)

But when the code is executed, we encounter an error message as follows:

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

TypeError: unsupported operand type(s) for +: 'int' and 'str'

Debug the snippet so that the correct result is displayed:

3 + 2 = 5

Solution

PRACTICE EXERCISE 6

value_a = 3

value_b = '2'

result = value_a + int(value_b)

print(value_a, '+', value_b, '=', result)

PYTHON

3 + 2 = 5

OUTPUT

Handling Input Variables

When we use input() to obtain a value from the user, the results are by default an instance of type str. An input() function always
stores the response as a str value, no matter what the user enters. However, it is possible to convert the type afterwards.

The input() function always returns a value of type str regardless of the user’s response. In other words, if a user’s response to an
input() request is numeric, Python will not automatically recognise it as a numeric type.

We may use type conversion in conjunction with the values returned by the input() function:

response = input('Please enter a numeric value: ')

response_numeric = float(response)

print('response:', response)

print('response type:', type(response))

print('response_numeric:', response_numeric)

print('response_numeric type:', type(response_numeric))

The output shows the results when we enter numeric values as directed.

We know that each amino acid in a protein is encoded by a triplet of mRNA nucleotides.

With that in mind, alter the script you wrote for Practice Exercise 3 and use the number of amino acids entered by the user to calculate
the number of mRNA nucleotides.

Display the results in the following format:

ENZYME_NAME is an enzyme with AMINO_ACIDS amino acids and NUCLEOTIDES

nucleotides.

where NUCLEOTIDES is the total number of mRNA nucleotides that you calculated.

Note: Multiplication is represented using the asterisk (*) sign.

DISCUSSION

REMEMBER

PRACTICE EXERCISE 7

Solution

enzyme = input('Please enter the name of an enzyme: ')

length = input('How many amino acids does the enzyme contain? ')

nucleotides = 3 * int(length)

print(enzyme, 'is an enzyme with', length, 'amino acids and', nucleotides, 'nucleotides.')

Variable scopes
Resolution of names
When de�ning a variable, we should always consider where in our program we intend to use it. The more localised our variables, the better. This
is because local variables are easier to distinguish, and thus reduce the chance of making mistakes — e.g. unintentionally rede�ning or altering
the value of an existing variable.

Therefore, the scope of a variable de�nes the ability to reference a variable from different points in our programs. The concept of local variables
becomes clearer once we explore functions in programming in chapter Functions.

As displayed in Figure Variable scopes, the point at or from which a variable can be referenced depends on the location where the variable is
de�ned.

In essence, there are three general rules to remember in relation to variable scopes in Python:

I. A variable that is de�ned in the outer scope, can be accessed or called in the inner scopes, but it cannot be altered implicitly. Not that such
variables may still be altered using special techniques (not discussed).

II. A variable that is de�ned in the innermost scopes (local), can only be accessed, called, or altered within the boundaries of the scope it is
de�ned in.

III. The inner scopes from which a variable is referenced must themselves be contained within the de�ning scope — e.g. in FuncB of Figure
Variable scopes, we can reference a, b, and x; but not f1. This is because the scope of f1 is Script → FuncA, so it can only be referenced
from Script → FuncA → … , but not `Script → … or Script → FuncB → … .

https://docs.python.org/3.6/reference/executionmodel.html#resolution-of-names
http://127.0.0.1:7480/06-functions.html

Variable scopes in Python with respect to scripts and functions.

As we discussed earlier in this lesson, it is paramount to remember that Python is an interpreted language. This means that the Python
interpreter goes through the codes that we write line by line, interpreting it to machine language. It is only then that the commands are
processed and executed by the computer. On that account, a variable (or a function) can be referenced only after its initial de�nition. That is why,
for instance, in Script (part 2) of Figure Variable scopes, we can reference every variable and function except for FuncC, which is declared
further down in the code hierarchy.

Although scope and hierarchy appear at �rst glance as theoretical concepts in programming, their implications are entirely practical. The
de�nition of these principles vary from one programming language to another. As such, it is essential to understand these principles and their
implications in relation to any programming language we are trying to learn.

Optional: How to use Terminal environment?

Operations
Through our experimentation with variable types, we already know that variables may be subjected to different operations.

When assessing type conversions, we also established that the operations we can apply to each variable depend on the type of that variable. To
that end, we learned that although it is sometimes possible to mix variables from different types to perform an operation (for example
multiplying a �oating point number with an integer), there are some logical restrictions in place.

Throughout this section, we will take a closer look into different types of operations in Python. This will allow us to gain a deeper insight, and to
familiarise ourselves with the underlying logic.

To recapitulate on what we have done so far, we start off by reviewing additions — the most basic of all operations.

Give the variable total_items:

We can increment the value of an existing variable by 1 as follows:

Given two different variables, each containing a different value; we can perform an operation on these values and store the result in another
variable without altering the original variables in any way:

We can change the value of an existing variable using a value stored in another variable:

total_items = 2

print(total_items)

PYTHON

2

OUTPUT

total_items = total_items + 1

print(total_items)

PYTHON

3

OUTPUT

old_items = 4

new_items = 3

total_items = old_items + new_items

print(total_items)

PYTHON

7

OUTPUT

There is also a shorthand method for applying this operation on an existing variable:

As highlighted in the introduction, different operations may be applied to any variable or value. We can now explore the most fundamental
operations in programming, and learn about their implementation in Python.

new_items = 5

total_items = total_items + new_items

print(total_items)

PYTHON

12

OUTPUT

total_items = 2

print(total_items)

PYTHON

2

OUTPUT

total_items += 1

print(total_items)

PYTHON

3

OUTPUT

new_items = 5

total_items += new_items

print(total_items)

PYTHON

8

OUTPUT

There are 2 very general categories of operations in programming: mathematical, and logical. Naturally, we use mathematical
operations to perform calculations, and logical operations to perform tests.

Mathematical Operations
Suppose a and b are two variables representing integers, as follows:

a = 17

b = 5

Using a and b we can itemise built-in mathematical operations in Python as follows:

Routine mathematical operations in Python

As far as mathematical operations are concerned, variables a and b may be an instance of any numeric type. See Table Routine
mathematical operations in Python to �nd out more about numeric types in Python.

Values of type int have been chosen in our examples to facilitate the understanding of the results.

REMEMBER

REMEMBER

1. Calculate the following and store the results in appropriately named variables:

a.

b.

c.

d.

e.

Display the result of each calculation – including the type, in the following format:

Result: X is an instance of <class 'Y'>

2. Now using the results you obtained:
I. Can you explain why the result of is an instance of type float, whilst that of is of type int?

II. Unlike the numeric types, string values have a length. To obtain the length of a string value, we use len() . Convert the result for
 from int to str, then use the aforementioned function to work out the length of the number — i.e. how many digits is it made of?

If you feel adventurous, you can try this for or higher; but beware that you might overwhelm your computer and need a restart it if
you go too far (i.e. above). Just make sure you save everything beforehand, so you don’t accidentally lose your work.

Hint: We discuss len() in our subsection of arrays arrays lesson. However, at this point, you should be able to use the of�cial function
documentation to �gure out how it works. To access a function’s documentation or docstring within Jupyter Notebook, for example you
can use help(function_name) to reveal it’s documentation. Clicking within the function (for example, placing your cursor inside the
function len) and using shift+tab can also be an easy shortcut for viewing a function’s docstring.

PRACTICE EXERCISE 8

5.8 × 3.3

180
6

35 − 3.0

35 − 3

21000

35 − 3.0 35 − 3

21000

210000

21000000

http://127.0.0.1:7480/04-arrays.html

Solution

q1_a = 5.8 * 3.3

print('Result:', q1_a, 'is an instance of', type(q1_a))

PYTHON

Result: 19.139999999999997 is an instance of <class 'float'>

OUTPUT

q1_b = 180 / 6

print('Result:', q1_b, 'is an instance of', type(q1_b))

PYTHON

Result: 30.0 is an instance of <class 'float'>

OUTPUT

q1_c = 35 - 3.0

print('Result:', q1_c, 'is an instance of', type(q1_c))

PYTHON

Result: 32.0 is an instance of <class 'float'>

OUTPUT

q1_d = 35 - 3

print('Result:', q1_d, 'is an instance of', type(q1_d))

PYTHON

Result: 32 is an instance of <class 'int'>

OUTPUT

q1_e = 2 ** 1000

print('Result:', q1_e, 'is an instance of', type(q1_e))

PYTHON

Result: 1071508607186267320948425049060001810561404811705533607443750388370351051124936122493198378815695

OUTPUT

Solution

In the case of vs , the former includes a �oating point number. Operations involving multiple numeric types always
produce the results as an instance of the type that covers all of the operands – i.e. float covers int, but not vice-versa.

Solution

As of Python 3.6, you can use an underscores (_) within large numbers as a separator to make them easier to read in your code. For
instance, instead of x = 1000000, you can write x = 1_000_000.

Shorthand:
When it comes to mathematical operations in Python, there is a frequently used shorthand method that every Python programmer should be
familiar with.

Suppose we have a variable de�ned as total_residues = 52 and want to perform a mathematical operation on it. However, we would like
to store the result of that operation in total_residues instead of a new variable. We can do this as follows:

35 − 3.0 35 − 3

big_num = 2 ** 1000

big_num_str = str(big_num)

big_num_len = len(big_num_str)

print('Length of 2**1000:', big_num_len)

PYTHON

Length of 2**1000: 302

OUTPUT

INTERESTING FACT

total_residues = 52

Addition:

total_residues += 8

print(total_residues)

PYTHON

60

OUTPUT

Subtraction:

total_residues -= 10

print(total_residues)

PYTHON

50

OUTPUT

Multiplication:

total_residues *= 2

print(total_residues)

PYTHON

100

OUTPUT

Division:

total_residues /= 4

print(total_residues)

PYTHON

25.0

OUTPUT

Floor quotient:

total_residues //= 2

print(total_residues)

PYTHON

12.0

OUTPUT

We can also perform such operations using multiple variables:

Remainder:

total_residues %= 5

print(total_residues)

PYTHON

2.0

OUTPUT

Power:

total_residues **= 3

print(total_residues)

PYTHON

8.0

OUTPUT

total_residues = 52

new_residues = 8

number_of_proteins = 3

total_residues += new_residues

print(total_residues)

PYTHON

60

OUTPUT

total_residues += (number_of_proteins * new_residues)

print(total_residues)

PYTHON

84

OUTPUT

1. Given:

Circumference:

Radius:

and considering that the properties of a circle are de�ned as follows:

calculate using the above equation and store it in a variable named pi:

Then round the results to 5 decimal places and display the result in the following format:

The value of pi calculated to 5 decimal places: X.XXXXX

Note: To round �oating point numbers in Python, we use the function round() . This is a built-in function that takes two input
arguments: the �rst is the variable/value to be rounded, and the second is the number of decimal places we wish to round to. Read more
about the round() function in its of�cial documentation.

2. Now without creating a new variable, perform the following operation:

where the expression ’‘ ’’ represents the remainder for the division of 3 by 2.

PRACTICE EXERCISE 9

C = 18.84956

R = 3

π =
C

D

π

pi =
pi

(3 mod 2) − 1

3 mod 2

https://docs.python.org/3/library/functions.html#round

Explain the output.

Solution

Solution

pi /= (3 % 2) - 1

The calculation raises a ZeroDivisionError. This is because division by zero is mathematically impossible.

Precedence:
In mathematics and computer programming, there are a series of conventional rules on the precedence of procedures to evaluate a
mathematical expression. This collection of rules is referred to as the order of operation or operator precedence.

Suppose we have a mathematical expression as follows:

Such an expression can only be evaluated correctly if we do the multiplication �rst and then perform the addition. This means that the
evaluation is done as follows:

For instance, in an expression such as:

the evaluation work�ow may be described as follows:

The same principle applies in Python. This means that if we use Python to evaluate the above expression, the result would be identical:

c = 18.84956

r = 3

d = r * 2

pi = c / d

print('The value of pi calculated to 5 decimal places:', round(pi, 5))

PYTHON

The value of pi calculated to 5 decimal places: 3.14159

OUTPUT

x = 2 + 3 × 9

given : 3 × 9 = 27

⟹ x = 2 + 27

= 29

x = 2 × (3 + (5 − 1))2

x = 2 × (3 +)42

= 2 × (3 + 16)

= 38

Operator precedence in mathematical operations may be described as follows:

1. Exponents and roots

2. Multiplication and division

3. Addition and subtraction

If there are any parentheses () in the expression, the expression is evaluated from the innermost parenthesis, outwards.

result = 2 * (3 + (5 - 1) ** 2)

print(result)

PYTHON

38

OUTPUT

REMEMBER

Display the result of each item in the following format:

EXPRESSION = RESULT

For example:

 2 + 3 = 5

1. Calculate each expression without using parentheses:

a.

b.

c.

d.

2. Calculate these expressions using parentheses:

a.

b.

c.

3. Given

a = 2

b = 5

use a and b to calculate the following expressions:

a.

b.

PRACTICE EXERCISE 10

3 × 2
4

5 + 3 × 2
4

3 × + 52
4

× 32
4

5 + × 32
4

5 + 2×3
4

5 + 2
4×3

(a + b)2

+ 2ab +a2 b2

Solution

q1_a = 3 * 2 / 4

print('3 * 2 / 4 =', q1_a)

PYTHON

3 * 2 / 4 = 1.5

OUTPUT

q1_b = 5 + 3 * 2 / 4

print('5 + 3 * 2 / 4 =', q1_b)

PYTHON

5 + 3 * 2 / 4 = 6.5

OUTPUT

q1_c = 3 * 2 / 4 + 5

print('3 * 2 / 4 + 5 =', q1_c)

PYTHON

3 * 2 / 4 + 5 = 6.5

OUTPUT

q1_d = 2 / 4 * 3

print('2 / 4 * 3 =', q1_d)

PYTHON

2 / 4 * 3 = 1.5

OUTPUT

Solution

q2_a = 5 + (2 / 4) * 3

print('5 + (2 / 4) * 3 =', q2_a)

PYTHON

5 + (2 / 4) * 3 = 6.5

OUTPUT

q2_b = 5 + (2 * 3) / 4

print('5 + (2 * 3) / 4 =', q2_b)

PYTHON

5 + (2 * 3) / 4 = 6.5

OUTPUT

q2_c = 5 + 2 / (4 * 3)

print('5 + 2 / (4 * 3) =', q2_c)

PYTHON

5 + 2 / (4 * 3) = 5.166666666666667

OUTPUT

Solution

Non-numeric values
It sometimes makes sense to apply some mathematical operations to non-numeric variables, too.

We can multiply strings in order to repeat them. There is no speci�c advantage to using multiplication instead of manually repeating characters
or words, but it does make our code look cleaner, which is ideal.

We can also add string values to each other. This is called string concatenation. It is a useful method for concatenating, and provides a useful
method for combining multiple strings and/or string variables.

a = 2

b = 5

q3_a = (a + b) ** 2

print('(a + b)^2 =', q3_a)

PYTHON

(a + b)^2 = 49

OUTPUT

q3_b = a ** 2 + 2 * a * b + b ** 2

print('a^2 + 2ab + b^2 =', q3_b)

PYTHON

a^2 + 2ab + b^2 = 49

OUTPUT

SEPARATOR = '-' * 20

NEW_LINE = '\n'

SPACE = ' '

forename = 'Jane'

surname = 'Doe'

birthday = '01/01/1990'

full_name = forename + SPACE + surname

data = full_name + NEW_LINE + SEPARATOR + NEW_LINE + 'DoB: ' + birthday

print(data)

PYTHON

New line character or '\n' is a universal directive to induce a line-break in Unix-based operating systems (Mac OS) and Linux). In
WINDOWS, we usually us '\r' or '\r\n' instead. These are known as escape sequences.

Jane Doe

DoB: 01/01/1990

OUTPUT

REMEMBER

Symptomatic Huntington’s disease appears to increase in proportion to the number of CAG trinucleotide repeats (the codon for
glutamine); once these exceed 35 repeats near the beginning of the Huntingtin (IT15) gene, the individual is phenotypic for the disease.
These CAG repeats are also referred to as a polyglutamine or polyQ tract.

glutamine_codon = 'CAG'

1. Create a polynucleotide chain representing 36 glutamine codons. Store the result in a variable called polyq_codons.

Display the result as:

Polyglutamine codons with 36 repeats: XXXXXXXXX...

2. Use len() to work out the length of polyq_codons, and store the result in a variable called polyq_codons_length.

Display the result in the following format:

Number of nucleotides in a polyglutamine with 36 repeats: XXX

3. Use len() to work out the length of glutamine_codon, and store the result in variable amino_acids_per_codon.

4. Divide polyq_codons_length by amino_acids_per_codon to verify that the chain contains the total codons to encode exactly
36 amino acids. Store the result in a variable titled polyq_peptide_length.

Display the result in the following format:

Number of amino acids in a polyglutamine with 36 repeats: XXX

5. Determine the types for the following variable:

amino_acids_per_codon

polyq_codons_length

polyq_peptide_length

and display the result for each item in the following format:

Value: XXX - Type: <class 'XXXX'>

6. Are all the variables in task #5 of the same type? Why?

PRACTICE EXERCISE 11

7. Repeat from task #4, but this time use an alternative method of division as outlined in See Table Routine mathematical operations
in Python.

Solution

Solution

Solution

glutamine_codon = 'CAG'

polyq_codons = glutamine_codon * 36

print('Polyglutamine codons with 36 repeats:', polyq_codons)

PYTHON

Polyglutamine codons with 36 repeats: CAGC

OUTPUT

polyq_codons_length = len(polyq_codons)

print('Number of nucleotides in a polyglutamine with 36 repeats:', polyq_codons_length)

PYTHON

Number of nucleotides in a polyglutamine with 36 repeats: 108

OUTPUT

amino_acids_per_codon = len(glutamine_codon)

PYTHON

Solution

Solution

Solution

No, polyq_peptide_length is an instance of type float. This is because we used the normal division (/) and not �oor division (//})
to calculate its value. The result of normal division is always presented as a �oating point number.

polyq_peptide_length = polyq_codons_length / amino_acids_per_codon

print('Number of amino acids in a polyglutamine with 36 repeats:', polyq_peptide_length)

PYTHON

Number of amino acids in a polyglutamine with 36 repeats: 36.0

OUTPUT

print('Value:', amino_acids_per_codon, '- Type:', type(amino_acids_per_codon))

print('Value:', polyq_codons_length, '- Type:', type(polyq_codons_length))

print('Value:', polyq_peptide_length, '- Type:', type(polyq_peptide_length))

PYTHON

Value: 3 - Type: <class 'int'>

Value: 108 - Type: <class 'int'>

Value: 36.0 - Type: <class 'float'>

OUTPUT

Solution

The Boolean data type is named after the English mathematician and logician George Boole (1815–1864).

Logical Operations
An operation may sometimes involve a comparison. The result of these operations may be either True or False. This is known as the Boolean
or bool data type. In reality, however, computers record True and False as 1 and 0, respectively.

Operations with Boolean results are referred to as logical operations. Testing the results of such operations is referred to as truth value testing.

Given the two variables a and b as follows:

a = 17

b = 5

Boolean operations may be de�ned as outlined in this Table Routine logical operations in Python..

polyq_peptide_length = polyq_codons_length // amino_acids_per_codon

print('Number of amino acids in a polyglutamine with 36 repeats:', polyq_peptide_length)

print('Value:', amino_acids_per_codon, '- Type:', type(amino_acids_per_codon))

print('Value:', polyq_codons_length, '- Type:', type(polyq_codons_length))

print('Value:', polyq_peptide_length, '- Type:', type(polyq_peptide_length))

PYTHON

Number of amino acids in a polyglutamine with 36 repeats: 36

Value: 3 - Type: <class 'int'>

Value: 108 - Type: <class 'int'>

Value: 36 - Type: <class 'int'>

OUTPUT

INTERESTING FACT

Routine logical operations in Python.

We know that in algebra, the �rst identity (square of a binomial) is:

now given:

a = 15

b = 4

1. Calculate

Display the results in the following format:

y1 = XX

y2 = XX

2. Determine whether or not y_1 is indeed equal to y_2. Store the result of your test in another variable called equivalence. Display the
results in the following format:

Where a = XX and b = XX:

y1 is equal to y2: [True/False]

PRACTICE EXERCISE 12

(a + b = + 2ab +)2 a2 b2

= (a + by1)2

= + 2ab +y2 a2 b2

Solution

Solution

Negation
We can also use negation in logical operations. Negation in Python is implemented using not :

Negations in Python.

a = 15

b = 4

y_1 = (a + b) ** 2

y_2 = a ** 2 + 2 * a * b + b ** 2

print('y1 =', y_1)

print('y2 =', y_2)

PYTHON

y1 = 361

y2 = 361

OUTPUT

equivalence = y_1 == y_2

print('Where a =', a, ' and b=', b)

print('y1 is equal to y2:', equivalence)

PYTHON

Where a = 15 and b= 4

y1 is equal to y2: True

OUTPUT

Using the information from previous Practice Exercise 12:

1. Without using not , determine whether or not y_1 is not equal to y_2. Display the result of your test and store it in another variable
called inequivalent.

2. Negate inequivalent and display the result.

Solution

Solution

Disjunctions and Conjunctions:
Logical operations may be combined using conjunction with and and disjunction with or to create more complex logics:

PRACTICE EXERCISE 13

inequivalent = y_1 != y_2

print(inequivalent)

PYTHON

False

OUTPUT

inequivalent_negated = not inequivalent

print(inequivalent_negated)

PYTHON

True

OUTPUT

Disjunctions and Conjunctions in Python.

Given

a = True

b = False

c = True

Evaluate the following statements:

1. a == b

2. a == c

3. a or b

4. a and b

5. a or b and c

6. (a or b) and c

7. not a or (b and c)

8. not a or not(b and c)

9. not a and not(b and c)

10. not a and not(b or c)

Display the results in the following format:

1. [True/False]

2. [True/False]

 ...

Given that:

PRACTICE EXERCISE 14

a = True

b = False

c = True

PYTHON

Solution

Solution

Solution

Solution

print('1.', a == b)

PYTHON

1. False

OUTPUT

print('2.', a == c)

PYTHON

2. True

OUTPUT

print('3.', a or b)

PYTHON

3. True

OUTPUT

print('4.', a and b)

PYTHON

4. False

OUTPUT

Solution

Solution

Solution

Solution

print('5.', a or b and c)

PYTHON

5. True

OUTPUT

print('6.', (a or b) and c)

PYTHON

6. True

OUTPUT

print('7.', not a or (b and c))

PYTHON

7. False

OUTPUT

print('8.', not a or not(b and c))

PYTHON

8. True

OUTPUT

Solution

Solution

Complex logical operations:
It may help to break down more complex operations, or use parentheses to make them easier to read and write:

Complex Logical Operations in Python:

Notice that in the last example, all notations is essentially the same, and only varies in terms of the collective results as de�ned using
parentheses. Always remember that in a logical statement:

print('9.', not a and not(b and c))

PYTHON

9. False

OUTPUT

print('10.', not a and not(b or c))

PYTHON

10. False

OUTPUT

The statement in parentheses does not have precedence over the rest of the state (unlike mathematical statements). It merely
de�nes an independent part of the operation whose response is evaluated separately.

The precedence is established on a �rst-come-�rst-serve basis (from left to right).

Always use parentheses in longer statements for clari�cation.

In disjunctive statements (such as a > 5 or b > 5) if the �rst part is True, the second part is not checked. In other words, if a is
greater than 5, the computer does not proceed to check whether or not b is greater than 5.

In conjunctive statements (such as a > 5 and b > 5) the statement proceeds to the seconds part if the �rst part is True. In other
words, the result of a conjunctive statement is only True if both a and b are greater than 5. If a is False, the entire statement will
inevitably be False.

The longer the statement, the more dif�cult it would be to understand it properly, and by extension, the more likely it would be to
cause problems.

LOGICAL STATEMENT

a, b, c = 17, 5, 2 # Alternative method to define variables.

PYTHON

Disjunction: false OR true.

a < b or b > c

PYTHON

True

OUTPUT

Disjunction: true OR true.

a > b or b > c

PYTHON

True

OUTPUT

Conjunction: true AND true.

a > b and b > c

PYTHON

True

OUTPUT

Conjunction: false and true.

a < b and b > c

PYTHON

False

OUTPUT

Disjunction and conjunction: true OR false AND true

a > b or b < c and b < a

PYTHON

True

OUTPUT

Disjunction and conjunction: false OR true AND false

a < b or b > c and b > a

PYTHON

False

OUTPUT

Disjunctions and conjunction: false OR true AND true

a < b or b > c and b < a

PYTHON

True

OUTPUT

Disjunction and negated conjunction and conjunction:

true AND NOT false AND false

a < b or not b < c and b > a

PYTHON

These are only a few examples. There are endless possibilities, try them yourself and see how they work.

Some logical operations may be written in different ways. However, we should always use the notation that is most coherent in the
context of our code. If in doubt, use the simplest or shortest notation.

To that end, you may want to use variables to break complex statements down into smaller fragments:

False

OUTPUT

Disjunction and negated conjunction - similar to the

previous example: true AND NOT (false AND false)

a < b or not (b < c and b > a)

PYTHON

True

OUTPUT

REMEMBER

age_a, age_b = 15, 35

are_positive = age_a > 0 and age_b > 0

a_is_older = are_positive and (age_a > age_b)

b_is_older = are_positive and (age_a < age_b)

a_is_teenager = are_positive and 12 < age_a < 20

b_is_teenager = are_positive and 12 < age_b < 20

a_is_teenager and b_is_older

PYTHON

True

OUTPUT

a_is_teenager and a_is_older

PYTHON

Given

a = 3

b = 13

Test the following statements and display the results:

 or

 and

 and

where “|…|” represents the absolute value, and “ ” represents the remainder for the division of by .}

Display the results in the following format:

1. [True/False]

2. [True/False]

...

False

OUTPUT

a_is_teenager and (b_is_teenager or b_is_older)

PYTHON

True

OUTPUT

PRACTICE EXERCISE 15

< ba2

3 − < ba3

|25 − | > ba2

25 mod > ba2

25 mod > ba2 25 mod b < a

25 mod < ba2 25 mod b > a

12
a

a × 4 < b

n mod m n m

Solution

Solution

Solution

Solution

#Given that:

a = 3

b = 13

print('1.', a**2 < b)

PYTHON

1. True

OUTPUT

print('2.', (3 - a**3) < b)

PYTHON

2. True

OUTPUT

print('3.', abs(25 - a**2) > b)

PYTHON

3. True

OUTPUT

print('4.', (25 % a**2) > b)

PYTHON

4. False

OUTPUT

Solution

Solution

Solution

Exercises

print('5.', (25 % a**2) > b or (25 % b) < a)

PYTHON

5. False

OUTPUT

print('6.', (25 % a**2) < b and (25 % b) > a)

PYTHON

6. True

OUTPUT

print('7.', (12 / a) and (a * 4) < b)

PYTHON

7. True

OUTPUT

1. Write and execute a Python code to display your own name as an output in the Terminal.

2. Write and execute a Python code that:

Displays the text: Please press enter to continue..., and waits for the user to press enter.

Once the user presses enter, the program should display Welcome to my programme! before terminating.

3. We have an enzyme whose reaction velocity is at the substrate concentration of
. Work out the maximum reaction velocity or for this enzyme using the Michaelis-Menten equation:

Solution

Two key functions for I/O operations are print() and input()

Three most commonly used variables such as int, float, and str.

Variable scope can be local or global depending where they are being used.

Mathematical operations follow conventional rules of precedence

Logical operations provide results in Boolean (True or False)

END OF CHAPTER EXERCISES

v = 50 mol ⋅ ⋅L−1 s−1

[S] = = 2.5 mol ⋅Km L−1 Vmax

v =
[S]Vmax

+ [S]Km

KEY POINTS

