
Content from Getting started

Last updated on 2024-08-05 | Edit this page

Download Chapter PDF

Download Chapter notebook (ipynb)

Programming — why bother?
Data handling and analysis in bio-research and medicine is best done using coding. In October 2017, the American technology magazine Wired
published an article in which the author outlines reasons why several established bio-science researchers working in reputable institutions felt
the need to learn coding — specifically in Python: “Want to Make It as a Biologist? Better Learn to Code”.

We focus on the Python programming language throughout this course, but we discuss universal principles shared amongst many
programming languages. Through a diverse range of examples, we will be training these principles by solving problems that we face in
biological and medical research.

Why Python?
Python is a general-purpose programming language. This means that it can be exploited to design any type of software, from desktop and web,
to robotics and automation, to data analysis. The 2020 survey conducted by the Python Software Foundation and JetBrains found that
approximately 85% of respondents used Python as their first language to conduct data analysis.

OVERVIEW

Questions

Programming - why bother?

Why Python?

How to learn it?

Objectives

Understand the concept of programming

Understand the basics of Python language

THIS COURSE

®

Basic Python

http://127.0.0.1:5508/01-getting_started.html
https://github.com/LearnToDiscover/Basic_Python/edit/main/episodes/01-getting_started.Rmd
https://github.com/LearnToDiscover/Basic_Python/edit/main/episodes/01-getting_started.Rmd
http://127.0.0.1:5508/01-getting_started.pdf
http://127.0.0.1:5508/01-getting_started.ipynb
https://www.wired.com/2017/03/biologists-teaching-code-survive/
https://www.jetbrains.com/research/python-developers-survey-2017/#types-of-development

In addition, the 2021 developer survey conducted by StackOverflow found that Python is the third most popular general-purpose programming
language after JavaScript and HTML/CSS. This means that it enjoys a vibrant community that support and maintain its development, and the
development of the libraries associated with it. This is confirmed by the fact that the language is ranked as the second most popular language
on GitHub , which is the primary code-sharing platform amongst programmers.

Learning how to code as a beginner is akin to learning how to walk as a baby. You cannot learn programming by memorising directives;
no matter how well you memorise them. To learn how to code, one must learn how think algorithmically; that is, how to break different
tasks down into logical procedures. The only way to learn how to “think code” is to practice, make mistakes, and how to overcome those
mistakes. It is common to make the same mistake more than once, especially in different contexts, and that can become frustrating at
times. However, once you get it, you have it for life.

There are lots materials on the web, both free and paid, to assist with your learning. Use them to your advantage! Great programmers
are not the ones who know every technical detail by heart; rather, they are the ones who know what they are looking for, and where
they can find the answer.

Unlike popular belief, the name Python has nothing to do with the snake. It is in fact derived from the popular British sketch comedy
series Monty Python’s Flying Circus, of which inventor Guido van Rossum was a self-confessed fan.

Python: The Programming Language
Python is a general-purpose, high-level programming language. It was invented by the Dutch computer programmer Guido van Rossum and
was released for the first time in 1990.

A high-level programming language is a language that enjoys strong abstraction from computer details. This means that it is closer to the
language that is spoken and understood by humans; put simply: it makes the language more enjoyable to work with.

In terms of compilation (the conversion of code into the binary symbols understood by a computer), programming languages may be
divided into two different categories:

1 - Compiled These are languages whose code is translated (compiled) into machine language en-masse, and in advance, using a
designated compiler programme — e.g. C, Rust, Haskell.

2- Interpreted These languages rely on and must always be accompanied by an interpreter, whose job is to translate the source code
into machine language one line at a time — e.g. Python, R, MATLAB .

®

HOW TO LEARN?

KNOWN QUIRK

CATEGORIES

®

https://insights.stackoverflow.com/survey/2021#most-popular-technologies-language
https://madnight.github.io/githut/#/pull_requests/2018/1
https://madnight.github.io/githut/#/pull_requests/2018/1
https://madnight.github.io/githut/#/pull_requests/2018/1
https://en.wikipedia.org/wiki/Monty_Python%27s_Flying_Circus
https://en.wikipedia.org/wiki/Guido_van_Rossum

Programming is an important skill which is highly applicable to bio-research and medicine.

Python is one of the most popular programming language for being general-purpose and high level language.

Python uses an interpreter for line by line code translation.

Content from Variables, Types, and Operations

Last updated on 2024-08-05 | Edit this page

Download Chapter PDF

Download Chapter notebook (ipynb)

Mandatory Lesson Feedback Survey

The 'print' FunctionThe 'print' Function

KEY POINTS

OVERVIEW

Questions

What are input and output (I/O) operations?

What do variables do?

Why are types and scopes of variables important?

What types of operations are used?

Objectives

Understanding I/O operations

Build concepts of different types of variables

Learning about type conversions and scope

Understanding mathematical and logical operations

http://127.0.0.1:5508/02-input_output.html
https://github.com/LearnToDiscover/Basic_Python/edit/main/episodes/02-input_output.Rmd
https://github.com/LearnToDiscover/Basic_Python/edit/main/episodes/02-input_output.Rmd
http://127.0.0.1:5508/02-input_output.pdf
http://127.0.0.1:5508/02-input_output.ipynb
https://docs.google.com/forms/d/e/1FAIpQLSdr0capF7jloJhPH3Pki1B3LZoKOG16poOpuVJ7SL2LkwLHQA/viewform?pli=1
https://www.youtube.com/watch?v=Qr-UBp_AeDA

Basic Python OperationsBasic Python Operations

Logical ExpressionsLogical Expressions

In programming, we process data and produce outputs. When data is being processed, it is stored in memory so that it is readily available, and
can therefore be subject to the processes we want to apply.

In this lesson, we will discuss how to handle data in Python. We will start by displaying data on the screen, and understand how to receive input
from a user. We can then use these techniques to perform different mathematical and logical operations. We will also cover the fundamental
principles employed every time we code in Python. It is imperative that you understand everything before moving on.

I/O Operations
In computer science, input or output operations refer to the communication between an information processing system such as a computer, and
the outside world, which may be a user or even another computer. Such communications are more commonly known as I/O operations. In
general, this ‘outside world’ may be loosely defined as anything that falls outside of the coding environment.

https://www.youtube.com/watch?v=rCwBVf4_XjM
https://www.youtube.com/watch?v=ht6MSOg0JeA

Only what we define within the environment and what we store in the memory is directly controlled by our application. We may access
or take control over other environments, however, these interactions are classified as I/O operations. An example of this is interacting
with a file on our computer. While we have complete control over a file while working on it (e.g. reading from it or writing to it), the
access to the file and the transmission of data is in fact controlled and managed not by the programming environment but by the
operating system of the computer.

In programming, I/O operations include, but are not limited to:

Displaying the results of a calculation

Requiring the user to enter a value

Writing or reading data to and from a file or a database

Downloading data from the Internet

Operating a hardware (such as a robot, for example)

If you are interested in learning more about I/O systems and how they are handled at operating system level, you might benefit from
chapter 13 of Operating Systems Concepts, 10 ed. by Abraham Silberschatz, Greg Gagne, and Peter Galvin.

I/O Operations in Python
Input and Output

In this section, we learn about two fundamental methods of I/O operations in Python. We will be using these methods throughout the course, so
it is essential that you feel comfortable with them and the way they work before moving on.

REMEMBER

ADVANCED TOPIC

th

https://os.ecci.ucr.ac.cr/slides/Abraham-Silberschatz-Operating-System-Concepts-10th-2018.pdf
https://os.ecci.ucr.ac.cr/slides/Abraham-Silberschatz-Operating-System-Concepts-10th-2018.pdf
https://docs.python.org/3/tutorial/inputoutput.html

Print

The term output in reference to an application typically refers to data that has either been generated or manipulated by that
application.

For example; calculating the sum of two numbers. The action of calculating the sum is itself a mathematical operation. The result of our
calculation is called its output. Once we obtain the result, we might want to save it in a file or display it on the screen, in which case we
will be performing an I/O operation. I/O operation.

The simplest and most frequently used method for generating output in almost every modern programming language is to display
something on the screen. We recommend using Jupyter Notebooks to run our Python scripts, which defaults to displaying the output of
a code cell beneath the code itself. We will start by calling a dedicated built-in function named print() .

In programming, a function is essentially an isolated piece of code. It usually accepts input, does something to or with this,
and produces output. A function can process input, often using several operations in a particular sequence or configuration,
and process the input to give a final output. In Python programming syntax, a pair of (typically round) parentheses follows a
function, and these provide the function with the input arguments it needs when we call it, so that it can do what we intend, to
our data. We will explore functions in more details in Basic Python 4: Functions.

The print() function can take several inputs and performs different tasks. Its primary objective, however, is to take some values as
input and display them on the screen. Here is how it works:

Suppose we want to display some text in the Terminal. To do so, we write the following into a cell of our Jupyter Notebook (or on the
Terminal, a code editor or dedicated Integrated Development Environment (IDE)):

print('Welcome to L2D!!!')

This is now a fully functioning Python program that we can run using the Python interpreter.

If you are using an IDE (such as Mircosoft Visual Studio Code, for example) you must save the code in a file with the extension .py, in
order to execute your code using the internal tools provided by that IDE. The specifics of how you do so depend on the IDE that you are
using.

.py Python scripts can also be executed manually. To do so, we open the Terminal in MacOS or Linux or the command prompt (CMD) in
Windows and navigate to the directory where we saved the script.

If you don’t know how to navigate in the Terminal, see the example in section How to use terminal environment? at the end of
this chapter.

Once in the correct directory, we run a script called script_a.py by typing python3 script_a.py in our Terminal as follows:

PRODUCING AN OUTPUT

REMEMBER

NOTE

https://docs.python.org/3/library/functions.html#print
http://127.0.0.1:5508/06-functions.html

This will call the Python 3 interpreter to execute the code we wrote in script_a.py. Once executed, we will see the output displayed in
the Terminal window.

In a Jupyter Notebook we can press the keyboard shortcut ‘shift+enter’ to execute the code in a cell. The output will be displayed below
the code cell.

You have now successfully written and executed your first program in Python.

We know that print() is a function because it ends with a pair of parentheses, and it is written entirely in lowercase characters PEP-
8: Function Names. Some IDEs change color when they encounter built-in functions, in order to signal to the user that the function is
recognised, and available to use, and so that we don’t accidentally overwrite them.

We can pass more than a single value to the print() function, provided that each value is separated from another, using a comma. For
instance, if we write the code below and run the script, the results would be as shown in output.

Notice that there is a space between ‘Hello’ and ‘John’ even though we did not include a space in our text. This is the default behaviour of the
print() function when it receives more than a single value (argument).

This default behaviour may be changed using a keyword argument called sep:

python3 script_a.py

BASH

Hello world!

OUTPUT

REMEMBER

print('Hello', 'John')

PYTHON

Hello John

OUTPUT

print('Hello', 'John', sep='')

PYTHON

HelloJohn

OUTPUT

https://www.python.org/dev/peps/pep-0008/#function-names
https://www.python.org/dev/peps/pep-0008/#function-names

Explanation of a function call

print('Hello', 'John', sep='--')

PYTHON

Hello--John

OUTPUT

print('Jane', 21, 'London', sep='.')

PYTHON

Jane.21.London

OUTPUT

Write code that displays the following output:

Protein Kinase C (Alpha subunit)

Solution

Terminal window on a Linux computer

PRACTICE EXERCISE 1

print('Protein Kinase C (Alpha subunit)')

PYTHON

Protein Kinase C (Alpha subunit)

OUTPUT

Terminal window on a Mac

Input

Inputs are I/O operations that involve receiving some data from the outside world. This might include reading the contents of a file,
downloading something from the internet, or asking the user to enter a value.

The simplest way to acquire an input is to ask the user to enter a value in the Terminal. To do so, we use a dedicated built-in function
called input() .

In a Unix system (Mac OS or Linux), a tilde (~) is an alias that is used to refer to a user’s home directory.

This function takes a single argument called prompt. Prompt is the text displayed in the Terminal to ask the user for an input. Figure
Terminal window on a Linux computer and Terminal window on a Mac, illustrates a screen shot of an example PC’s prompt, where it
displays a user name (i.e. pouria) followed by a tilde (~). A Terminal prompt may be different in each computer and operating system.

Here is how we implement the input() function:

input('Please enter your name: ')

which is exactly the same as:

input(prompt='Please enter your name: ')

If we save one of the above in a notebook and execute it, we will see:

python3 script_b.py

Please enter your name: _

The Terminal cursor, displayed as an underscore in our example, will be in front of the prompt (i.e. 'Please enter your name: ')
waiting for a response. Once it receives a response, it will proceed to run the rest of the code (if any), or terminate the execution.

We may store the user’s response in a variable. Variables are the topic of the next episode in this learning material, where we shall also
review more examples on input() and how we can use it to produce results based on the responses we receive from the user.

RECEIVING AN INPUT

NOTE

https://docs.python.org/3/library/functions.html#input

Python is an interpreted language; this means that the code we write is executed by the Python interpreter one line at a time. The
input() function performs a blocking process. This means that the execution of the code by the Python interpreter is halted upon

encountering an input() function until the user enters a value. Once a value is entered, the interpreter then proceeds to execute the
next line.

Write a script that asks the user to enter the name of a protein in the Terminal.

Solution

input('Please enter the name of a protein: ')

Variables And Types
Variables are a type of data container, that we can use to store data to memory. Each variable has three main types of attribute: scope, name,
and type. Scope and name must be mutually unique. Starting with name, we will discuss each of these attributes in more details throughout this
chapter.

Variable names
PEP–8 Naming Conventions

The name that we give to a variable is, in fact, an alias for a location in the memory. You can think of it as a postbox, which is used as a
substitute for an actual address. Similarly, we use variable names so we don’t have to use the actual address to the location we want in the
memory; because it would look something like this 0x106fb8348.

There are some relatively simple rules to follow when defining variable names, which ultimately boil down to:

REMEMBER

PRACTICE EXERCISE 2

https://www.python.org/dev/peps/pep-0008/#naming-conventions

We should never overwrite an existing, built-in definition or identifier (e.g. int or print). We will be learning many such definitions and
identifiers as we progress through this course. Nonetheless, the Jupyter Notebook as well as any good IDE highlights syntaxes and built-
in identifiers in different colours. In Jupyter, the default for built-in definitions is green. The exact colouring scheme depends on the IDE
being used, and the selected theme.

Once a variable is defined, its value may be altered or reset:

In Python, variables containing integer numbers are referred to as int, and those containing decimal numbers are referred to as float.

REMEMBER

total_items = 2

print(total_items)

PYTHON

2

OUTPUT

total_items = 3

print(total_items)

PYTHON

3

OUTPUT

Variables can contain data as characters as well; but to prevent Python from confusing them with meaningful commands, we use quotation
marks. So long as we remain consistent, it doesn’t matter whether we use single or double quotations. These data are known as string or str:

total_values = 3.2

print(total_values)

PYTHON

3.2

OUTPUT

temperature = 16.

print(temperature)

PYTHON

16.0

OUTPUT

forename = 'John'

surname = "Doe"

print('Hi,', forename, surname)

PYTHON

Hi, John Doe

OUTPUT

Oxidised low-density lipoprotein (LDL) receptor 1 mediates the recognition, internalisation and degradation of oxidatively modified low-
density lipoprotein by vascular endothelial cells. Using the Universal Protein Resource (UniProt) website, find this protein for humans,
and identify:

UniProt entry number.

Length of the protein (right at the top).

Gene name (right at the top).

Store the information you retrieved, including the protein name, in within four separate variables.

Display the values of these four variables in one line, and separate the items with three spaces, as follows:

Name EntryNo GeneName Length

Solution

PRACTICE EXERCISE 3

name = 'Oxidised low-density lipoprotein (LDL) receptor 1'

uniprot_entry = 'P78380'

gene_name = 'OLR1'

length = 273

print(name, uniprot_entry, gene_name, length, sep=' ')

PYTHON

Oxidised low-density lipoprotein (LDL) receptor 1 P78380 OLR1 273

OUTPUT

https://beta.uniprot.org/

1. Write a Python code that upon execution, asks the user to enter the name of an enzyme and then stores the response in an
appropriately named variable.

2. Use the variable to display an output similar to the following:

ENZYME_NAME is an enzyme.

where ENZYME_NAME is the name of the enzyme entered in the prompt.

3. Now modify your script to prompt the user to enter the number of amino acids in that enzyme. Store the value in another
appropriately named variable.

4. Alter the output of your script to display a report in the following format:

ENZYME_NAME is an enzyme containing a total number of AMINO_ACIDS} amino acids.

where AMINO_ACIDS is the number of amino acids.

Solution

enzyme = input('Please enter the name of an enzyme: ')

print(enzyme, 'is an enzyme.')

length = input('How many amino acids does the enzyme contain? ')

print(enzyme, 'is an enzyme containing a total number of', length, 'amino acids.')

Variable Types
Built-in Types

When it comes to types, programming languages may be divided into two distinct categories:

Statically typed languages: these require the programmer to explicitly declare the type of each variable, and this type is checked
at compile time.

Dynamically typed languages: the type of the variable is determined at run time, and variables can change types on the fly. The
programmer is not required to explicitly define the type of a variable: the language infers the type of the variable, once it is assigned
data.

Python is a dynamically typed language, and falls into this second category. This means that, unlike statically typed languages, we
rarely need to worry about the type definitions because in the majority of cases, Python takes care of them for us, and automatically
decodes the type of data being stored in a variable, once it is defined by the user.

PRACTICE EXERCISE 4

TYPES

https://docs.python.org/3/library/stdtypes.html

In a dynamically typed language, it is the value of a variable that determines the type. This is because the types are determined on the
fly by the Python interpreter as and when it encounters different variables and values.

In computer programming, type systems are syntactic methods to enforce and/or identify levels of abstraction. This means that type
systems take advantage of the syntax of a particular programming language, in order to enforce rules and identify types. This is
important, as it can manage abstraction in data, by ensuring that differing data types interact meaningfully with one another. An entire
field in computer science has been dedicated to the study of programming languages from a type–theoretic approach. This is primarily
due to the implication of types and their underlying principles in such areas in software engineering as optimisation and security. To
learn more about the study of type systems, refer to: Pierce B. Types and programming languages. Cambridge, Mass.: MIT Press; 2002.

The values determine the type of a variable in dynamically typed languages. This is in contrast to statically typed languages, where a
variable must be initialised using a specific type before a value.

Why learn about types in a dynamically typed programming language?

Python enjoys a powerful type system out of the box. The following table - Built-in types in Python - provides a comprehensive reference for the
built-in types in Python. Built-in types already exist in the language, and do not require the use or implementation of any third-party libraries.

A comprehensive (but non-exhaustive) reference of built-in (native) types in Python 3.
 Not discussed in this course — included for reference only.
dict is not an iterable by default, however, it is possible to iterate through its keys.

REMEMBER

ADVANCED TOPIC

NOTE

*

$

Mutability is an important concept in programming. A mutable object is an object whose value(s) may be altered. This will become clearer once
we study list and tuple. Find out more about mutability in Python from the documentation.

Complex numbers refer to a set of numbers that have both a real component, and an imaginary component; where the imaginary part is defined
as . These numbers are very useful in the study of oscillatory behaviours and flow (e.g. heat, fluid, electricity). To learn more about complex
numbers, watch this Khan Academy video tutorial.

Sometimes we might need want to explicitly know what the type of a variable is. To do this, we can use the build-in function type() as follows:

−1
−−−

√

total_items = 2

print(type(total_items))

PYTHON

<class 'int'>

OUTPUT

total_values = 3.2

print(type(total_values))

PYTHON

<class 'float'>

OUTPUT

temperature = 16.

print(type(temperature))

PYTHON

<class 'float'>

OUTPUT

phase = 12.5+1.5j

print(type(phase))

PYTHON

<class 'complex'>

OUTPUT

https://en.wikipedia.org/wiki/Immutable_object
https://docs.python.org/3.9/reference/datamodel.html
http://thinkzone.wlonk.com/Numbers/NumberSets.htm
https://www.khanacademy.org/math/algebra2/introduction-to-complex-numbers-algebra-2/the-complex-numbers-algebra-2/v/complex-number-intro

In Python, a variable/value of a certain type may be referred to as an instance of that type. For instance, an integer value whose type in
Python is defined as int is said to be an instance of type int.

Determine and display the type for each of these values:

32

24.3454

2.5 + 1.5

“RNA Polymerase III”

0

.5 - 1

1.3e-5

3e5

The result for each value should be represented in the following format:

Value X is an instance of <class 'Y'>

full_name = 'John Doe'

print(type(full_name))

PYTHON

<class 'str'>

OUTPUT

REMEMBER

PRACTICE EXERCISE 5

Solution

value = 32

value_type = type(value)

print('Value', value, 'is an instance of', value_type)

PYTHON

Value 32 is an instance of <class 'int'>

OUTPUT

value = 24.3454

value_type = type(value)

print('Value', value, 'is an instance of', value_type)

PYTHON

Value 24.3454 is an instance of <class 'float'>

OUTPUT

value = 2.5 + 1.5

value_type = type(value)

print('Value', value, 'is an instance of', value_type)

PYTHON

Value 4.0 is an instance of <class 'float'>

OUTPUT

value = "RNA Polymerase III"

value_type = type(value)

print('Value', value, 'is an instance of', value_type)

PYTHON

Value RNA Polymerase III is an instance of <class 'str'>

OUTPUT

value = 0

value_type = type(value)

print('Value', value, 'is an instance of', value_type)

PYTHON

Value 0 is an instance of <class 'int'>

OUTPUT

value = .5 - 1

value_type = type(value)

print('Value', value, 'is an instance of', value_type)

PYTHON

Value -0.5 is an instance of <class 'float'>

OUTPUT

value = 1.3e-5

value_type = type(value)

print('Value', value, 'is an instance of', value_type)

PYTHON

Value 1.3e-05 is an instance of <class 'float'>

OUTPUT

value = 3e5

value_type = type(value)

print('Value', value, 'is an instance of', value_type)

PYTHON

Value 300000.0 is an instance of <class 'float'>

OUTPUT

Conversion of types

It is sometimes necessary to have the values returned by the input() function — i.e. the user’s response, in other types. Imagine the
following scenario:

“We ask our user to enter the total volume of their purified protein, so that we can work out the amount of assay they need to conduct a
specific experiment. To calculate this assay volume using the volume of the purified protein, we need to perform mathematical
calculations based on the response we receive from our user. It is not possible to perform mathematical operations on non-numeric
values. Therefore, we ought to somehow convert the type from str to a numeric type.”

The possibility of converting from one type to another depends entirely on the value, the source type, and the target type. For instance;
we can convert an instance of type str (source type) to one of type int (target type) if and only if the source value consists entirely of
numbers and there are no other characters.

To convert a variable from one type to another, we use the Type Name of the target type (as described in Table Built-in types in Python
and treat it as a function.

For instance, to convert a variable to integer, we:

look up the Type Name for integer from Table Built-in types in Python

then treat the Type Name as a function: int()

use the function to convert our variable: new_var = int(old_var)

Here is an example of how we convert types in Python:

WHY CONVERT TYPES?

REMEMBER

value_a = '12'

print(value_a, type(value_a))

PYTHON

12 <class 'str'>

OUTPUT

value_b = int(value_a)

print(value_b, type(value_b))

PYTHON

If we attempt to convert a variable that contains non-numeric values, a ValueError is raised:

12 <class 'int'>

OUTPUT

value_a = '12y'

print(value_a, type(value_a))

PYTHON

12y <class 'str'>

OUTPUT

value_b = int(value_a)

PYTHON

ValueError: invalid literal for int() with base 10: '12y'

OUTPUT

In programming, we routinely face errors resulting from different mistakes. The process of finding and correcting such mistakes in the
code is referred to as debugging.

We have been given the following piece of code written in Python:

value_a = 3

value_b = '2'

result = value_a + value_b

print(value_a, '+', value_b, '=', result)

But when the code is executed, we encounter an error message as follows:

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

TypeError: unsupported operand type(s) for +: 'int' and 'str'

Debug the snippet so that the correct result is displayed:

3 + 2 = 5

Solution

PRACTICE EXERCISE 6

value_a = 3

value_b = '2'

result = value_a + int(value_b)

print(value_a, '+', value_b, '=', result)

PYTHON

3 + 2 = 5

OUTPUT

Handling Input Variables

When we use input() to obtain a value from the user, the results are by default an instance of type str. An input() function always
stores the response as a str value, no matter what the user enters. However, it is possible to convert the type afterwards.

The input() function always returns a value of type str regardless of the user’s response. In other words, if a user’s response to an
input() request is numeric, Python will not automatically recognise it as a numeric type.

We may use type conversion in conjunction with the values returned by the input() function:

response = input('Please enter a numeric value: ')

response_numeric = float(response)

print('response:', response)

print('response type:', type(response))

print('response_numeric:', response_numeric)

print('response_numeric type:', type(response_numeric))

The output shows the results when we enter numeric values as directed.

We know that each amino acid in a protein is encoded by a triplet of mRNA nucleotides.

With that in mind, alter the script you wrote for Practice Exercise 3 and use the number of amino acids entered by the user to calculate
the number of mRNA nucleotides.

Display the results in the following format:

ENZYME_NAME is an enzyme with AMINO_ACIDS amino acids and NUCLEOTIDES

nucleotides.

where NUCLEOTIDES is the total number of mRNA nucleotides that you calculated.

Note: Multiplication is represented using the asterisk (*) sign.

DISCUSSION

REMEMBER

PRACTICE EXERCISE 7

Solution

enzyme = input('Please enter the name of an enzyme: ')

length = input('How many amino acids does the enzyme contain? ')

nucleotides = 3 * int(length)

print(enzyme, 'is an enzyme with', length, 'amino acids and', nucleotides, 'nucleotides.')

Variable scopes
Resolution of names
When defining a variable, we should always consider where in our program we intend to use it. The more localised our variables, the better. This
is because local variables are easier to distinguish, and thus reduce the chance of making mistakes — e.g. unintentionally redefining or altering
the value of an existing variable.

Therefore, the scope of a variable defines the ability to reference a variable from different points in our programs. The concept of local variables
becomes clearer once we explore functions in programming in chapter Functions.

As displayed in Figure Variable scopes, the point at or from which a variable can be referenced depends on the location where the variable is
defined.

In essence, there are three general rules to remember in relation to variable scopes in Python:

I. A variable that is defined in the outer scope, can be accessed or called in the inner scopes, but it cannot be altered implicitly. Not that such
variables may still be altered using special techniques (not discussed).

II. A variable that is defined in the innermost scopes (local), can only be accessed, called, or altered within the boundaries of the scope it is
defined in.

III. The inner scopes from which a variable is referenced must themselves be contained within the defining scope — e.g. in FuncB of Figure
Variable scopes, we can reference a, b, and x; but not f1. This is because the scope of f1 is Script → FuncA, so it can only be referenced
from Script → FuncA → … , but not `Script → … or Script → FuncB → … .

https://docs.python.org/3.6/reference/executionmodel.html#resolution-of-names
http://127.0.0.1:5508/06-functions.html

Variable scopes in Python with respect to scripts and functions.

As we discussed earlier in this lesson, it is paramount to remember that Python is an interpreted language. This means that the Python
interpreter goes through the codes that we write line by line, interpreting it to machine language. It is only then that the commands are
processed and executed by the computer. On that account, a variable (or a function) can be referenced only after its initial definition. That is why,
for instance, in Script (part 2) of Figure Variable scopes, we can reference every variable and function except for FuncC, which is declared
further down in the code hierarchy.

Although scope and hierarchy appear at first glance as theoretical concepts in programming, their implications are entirely practical. The
definition of these principles vary from one programming language to another. As such, it is essential to understand these principles and their
implications in relation to any programming language we are trying to learn.

Optional: How to use Terminal environment?

Operations
Through our experimentation with variable types, we already know that variables may be subjected to different operations.

When assessing type conversions, we also established that the operations we can apply to each variable depend on the type of that variable. To
that end, we learned that although it is sometimes possible to mix variables from different types to perform an operation (for example
multiplying a floating point number with an integer), there are some logical restrictions in place.

Throughout this section, we will take a closer look into different types of operations in Python. This will allow us to gain a deeper insight, and to
familiarise ourselves with the underlying logic.

To recapitulate on what we have done so far, we start off by reviewing additions — the most basic of all operations.

Give the variable total_items:

We can increment the value of an existing variable by 1 as follows:

Given two different variables, each containing a different value; we can perform an operation on these values and store the result in another
variable without altering the original variables in any way:

We can change the value of an existing variable using a value stored in another variable:

total_items = 2

print(total_items)

PYTHON

2

OUTPUT

total_items = total_items + 1

print(total_items)

PYTHON

3

OUTPUT

old_items = 4

new_items = 3

total_items = old_items + new_items

print(total_items)

PYTHON

7

OUTPUT

There is also a shorthand method for applying this operation on an existing variable:

As highlighted in the introduction, different operations may be applied to any variable or value. We can now explore the most fundamental
operations in programming, and learn about their implementation in Python.

new_items = 5

total_items = total_items + new_items

print(total_items)

PYTHON

12

OUTPUT

total_items = 2

print(total_items)

PYTHON

2

OUTPUT

total_items += 1

print(total_items)

PYTHON

3

OUTPUT

new_items = 5

total_items += new_items

print(total_items)

PYTHON

8

OUTPUT

There are 2 very general categories of operations in programming: mathematical, and logical. Naturally, we use mathematical
operations to perform calculations, and logical operations to perform tests.

Mathematical Operations
Suppose a and b are two variables representing integers, as follows:

a = 17

b = 5

Using a and b we can itemise built-in mathematical operations in Python as follows:

Routine mathematical operations in Python

As far as mathematical operations are concerned, variables a and b may be an instance of any numeric type. See Table Routine
mathematical operations in Python to find out more about numeric types in Python.

Values of type int have been chosen in our examples to facilitate the understanding of the results.

REMEMBER

REMEMBER

1. Calculate the following and store the results in appropriately named variables:

a.

b.

c.

d.

e.

Display the result of each calculation – including the type, in the following format:

Result: X is an instance of <class 'Y'>

2. Now using the results you obtained:
I. Can you explain why the result of is an instance of type float, whilst that of is of type int?

II. Unlike the numeric types, string values have a length. To obtain the length of a string value, we use len() . Convert the result for
 from int to str, then use the aforementioned function to work out the length of the number — i.e. how many digits is it made of?

If you feel adventurous, you can try this for or higher; but beware that you might overwhelm your computer and need a restart it if
you go too far (i.e. above). Just make sure you save everything beforehand, so you don’t accidentally lose your work.

Hint: We discuss len() in our subsection of arrays arrays lesson. However, at this point, you should be able to use the official function
documentation to figure out how it works. To access a function’s documentation or docstring within Jupyter Notebook, for example you
can use help(function_name) to reveal it’s documentation. Clicking within the function (for example, placing your cursor inside the
function len) and using shift+tab can also be an easy shortcut for viewing a function’s docstring.

PRACTICE EXERCISE 8

5.8 × 3.3

180
6

35 − 3.0

35 − 3

21000

35 − 3.0 35 − 3

21000

210000

21000000

http://127.0.0.1:5508/04-arrays.html

Solution

q1_a = 5.8 * 3.3

print('Result:', q1_a, 'is an instance of', type(q1_a))

PYTHON

Result: 19.139999999999997 is an instance of <class 'float'>

OUTPUT

q1_b = 180 / 6

print('Result:', q1_b, 'is an instance of', type(q1_b))

PYTHON

Result: 30.0 is an instance of <class 'float'>

OUTPUT

q1_c = 35 - 3.0

print('Result:', q1_c, 'is an instance of', type(q1_c))

PYTHON

Result: 32.0 is an instance of <class 'float'>

OUTPUT

q1_d = 35 - 3

print('Result:', q1_d, 'is an instance of', type(q1_d))

PYTHON

Result: 32 is an instance of <class 'int'>

OUTPUT

q1_e = 2 ** 1000

print('Result:', q1_e, 'is an instance of', type(q1_e))

PYTHON

Result: 1071508607186267320948425049060001810561404811705533607443750388370351051124936122493198378815695

OUTPUT

Solution

In the case of vs , the former includes a floating point number. Operations involving multiple numeric types always
produce the results as an instance of the type that covers all of the operands – i.e. float covers int, but not vice-versa.

Solution

As of Python 3.6, you can use an underscores (_) within large numbers as a separator to make them easier to read in your code. For
instance, instead of x = 1000000, you can write x = 1_000_000.

Shorthand:
When it comes to mathematical operations in Python, there is a frequently used shorthand method that every Python programmer should be
familiar with.

Suppose we have a variable defined as total_residues = 52 and want to perform a mathematical operation on it. However, we would like
to store the result of that operation in total_residues instead of a new variable. We can do this as follows:

35 − 3.0 35 − 3

big_num = 2 ** 1000

big_num_str = str(big_num)

big_num_len = len(big_num_str)

print('Length of 2**1000:', big_num_len)

PYTHON

Length of 2**1000: 302

OUTPUT

INTERESTING FACT

total_residues = 52

Addition:

total_residues += 8

print(total_residues)

PYTHON

60

OUTPUT

Subtraction:

total_residues -= 10

print(total_residues)

PYTHON

50

OUTPUT

Multiplication:

total_residues *= 2

print(total_residues)

PYTHON

100

OUTPUT

Division:

total_residues /= 4

print(total_residues)

PYTHON

25.0

OUTPUT

Floor quotient:

total_residues //= 2

print(total_residues)

PYTHON

12.0

OUTPUT

We can also perform such operations using multiple variables:

Remainder:

total_residues %= 5

print(total_residues)

PYTHON

2.0

OUTPUT

Power:

total_residues **= 3

print(total_residues)

PYTHON

8.0

OUTPUT

total_residues = 52

new_residues = 8

number_of_proteins = 3

total_residues += new_residues

print(total_residues)

PYTHON

60

OUTPUT

total_residues += (number_of_proteins * new_residues)

print(total_residues)

PYTHON

84

OUTPUT

1. Given:

Circumference:

Radius:

and considering that the properties of a circle are defined as follows:

calculate using the above equation and store it in a variable named pi:

Then round the results to 5 decimal places and display the result in the following format:

The value of pi calculated to 5 decimal places: X.XXXXX

Note: To round floating point numbers in Python, we use the function round() . This is a built-in function that takes two input
arguments: the first is the variable/value to be rounded, and the second is the number of decimal places we wish to round to. Read more
about the round() function in its official documentation.

2. Now without creating a new variable, perform the following operation:

where the expression ’‘ ’’ represents the remainder for the division of 3 by 2.

PRACTICE EXERCISE 9

C = 18.84956

R = 3

π =
C

D

π

pi =
pi

(3 mod 2) − 1

3 mod 2

https://docs.python.org/3/library/functions.html#round

Explain the output.

Solution

Solution

pi /= (3 % 2) - 1

The calculation raises a ZeroDivisionError. This is because division by zero is mathematically impossible.

Precedence:
In mathematics and computer programming, there are a series of conventional rules on the precedence of procedures to evaluate a
mathematical expression. This collection of rules is referred to as the order of operation or operator precedence.

Suppose we have a mathematical expression as follows:

Such an expression can only be evaluated correctly if we do the multiplication first and then perform the addition. This means that the
evaluation is done as follows:

For instance, in an expression such as:

the evaluation workflow may be described as follows:

The same principle applies in Python. This means that if we use Python to evaluate the above expression, the result would be identical:

c = 18.84956

r = 3

d = r * 2

pi = c / d

print('The value of pi calculated to 5 decimal places:', round(pi, 5))

PYTHON

The value of pi calculated to 5 decimal places: 3.14159

OUTPUT

x = 2 + 3 × 9

given : 3 × 9 = 27

⟹ x = 2 + 27

= 29

x = 2 × (3 + (5 − 1))2

x = 2 × (3 +)42

= 2 × (3 + 16)

= 38

Operator precedence in mathematical operations may be described as follows:

1. Exponents and roots

2. Multiplication and division

3. Addition and subtraction

If there are any parentheses () in the expression, the expression is evaluated from the innermost parenthesis, outwards.

result = 2 * (3 + (5 - 1) ** 2)

print(result)

PYTHON

38

OUTPUT

REMEMBER

Display the result of each item in the following format:

EXPRESSION = RESULT

For example:

 2 + 3 = 5

1. Calculate each expression without using parentheses:

a.

b.

c.

d.

2. Calculate these expressions using parentheses:

a.

b.

c.

3. Given

a = 2

b = 5

use a and b to calculate the following expressions:

a.

b.

PRACTICE EXERCISE 10

3 × 2
4

5 + 3 × 2
4

3 × + 52
4

× 32
4

5 + × 32
4

5 + 2×3
4

5 + 2
4×3

(a + b)2

+ 2ab +a2 b2

Solution

q1_a = 3 * 2 / 4

print('3 * 2 / 4 =', q1_a)

PYTHON

3 * 2 / 4 = 1.5

OUTPUT

q1_b = 5 + 3 * 2 / 4

print('5 + 3 * 2 / 4 =', q1_b)

PYTHON

5 + 3 * 2 / 4 = 6.5

OUTPUT

q1_c = 3 * 2 / 4 + 5

print('3 * 2 / 4 + 5 =', q1_c)

PYTHON

3 * 2 / 4 + 5 = 6.5

OUTPUT

q1_d = 2 / 4 * 3

print('2 / 4 * 3 =', q1_d)

PYTHON

2 / 4 * 3 = 1.5

OUTPUT

Solution

q2_a = 5 + (2 / 4) * 3

print('5 + (2 / 4) * 3 =', q2_a)

PYTHON

5 + (2 / 4) * 3 = 6.5

OUTPUT

q2_b = 5 + (2 * 3) / 4

print('5 + (2 * 3) / 4 =', q2_b)

PYTHON

5 + (2 * 3) / 4 = 6.5

OUTPUT

q2_c = 5 + 2 / (4 * 3)

print('5 + 2 / (4 * 3) =', q2_c)

PYTHON

5 + 2 / (4 * 3) = 5.166666666666667

OUTPUT

Solution

Non-numeric values
It sometimes makes sense to apply some mathematical operations to non-numeric variables, too.

We can multiply strings in order to repeat them. There is no specific advantage to using multiplication instead of manually repeating characters
or words, but it does make our code look cleaner, which is ideal.

We can also add string values to each other. This is called string concatenation. It is a useful method for concatenating, and provides a useful
method for combining multiple strings and/or string variables.

a = 2

b = 5

q3_a = (a + b) ** 2

print('(a + b)^2 =', q3_a)

PYTHON

(a + b)^2 = 49

OUTPUT

q3_b = a ** 2 + 2 * a * b + b ** 2

print('a^2 + 2ab + b^2 =', q3_b)

PYTHON

a^2 + 2ab + b^2 = 49

OUTPUT

SEPARATOR = '-' * 20

NEW_LINE = '\n'

SPACE = ' '

forename = 'Jane'

surname = 'Doe'

birthday = '01/01/1990'

full_name = forename + SPACE + surname

data = full_name + NEW_LINE + SEPARATOR + NEW_LINE + 'DoB: ' + birthday

print(data)

PYTHON

New line character or '\n' is a universal directive to induce a line-break in Unix-based operating systems (Mac OS) and Linux). In
WINDOWS, we usually us '\r' or '\r\n' instead. These are known as escape sequences.

Jane Doe

DoB: 01/01/1990

OUTPUT

REMEMBER

Symptomatic Huntington’s disease appears to increase in proportion to the number of CAG trinucleotide repeats (the codon for
glutamine); once these exceed 35 repeats near the beginning of the Huntingtin (IT15) gene, the individual is phenotypic for the disease.
These CAG repeats are also referred to as a polyglutamine or polyQ tract.

glutamine_codon = 'CAG'

1. Create a polynucleotide chain representing 36 glutamine codons. Store the result in a variable called polyq_codons.

Display the result as:

Polyglutamine codons with 36 repeats: XXXXXXXXX...

2. Use len() to work out the length of polyq_codons, and store the result in a variable called polyq_codons_length.

Display the result in the following format:

Number of nucleotides in a polyglutamine with 36 repeats: XXX

3. Use len() to work out the length of glutamine_codon, and store the result in variable amino_acids_per_codon.

4. Divide polyq_codons_length by amino_acids_per_codon to verify that the chain contains the total codons to encode exactly
36 amino acids. Store the result in a variable titled polyq_peptide_length.

Display the result in the following format:

Number of amino acids in a polyglutamine with 36 repeats: XXX

5. Determine the types for the following variable:

amino_acids_per_codon

polyq_codons_length

polyq_peptide_length

and display the result for each item in the following format:

Value: XXX - Type: <class 'XXXX'>

6. Are all the variables in task #5 of the same type? Why?

PRACTICE EXERCISE 11

7. Repeat from task #4, but this time use an alternative method of division as outlined in See Table Routine mathematical operations
in Python.

Solution

Solution

Solution

glutamine_codon = 'CAG'

polyq_codons = glutamine_codon * 36

print('Polyglutamine codons with 36 repeats:', polyq_codons)

PYTHON

Polyglutamine codons with 36 repeats: CAGC

OUTPUT

polyq_codons_length = len(polyq_codons)

print('Number of nucleotides in a polyglutamine with 36 repeats:', polyq_codons_length)

PYTHON

Number of nucleotides in a polyglutamine with 36 repeats: 108

OUTPUT

amino_acids_per_codon = len(glutamine_codon)

PYTHON

Solution

Solution

Solution

No, polyq_peptide_length is an instance of type float. This is because we used the normal division (/) and not floor division (//})
to calculate its value. The result of normal division is always presented as a floating point number.

polyq_peptide_length = polyq_codons_length / amino_acids_per_codon

print('Number of amino acids in a polyglutamine with 36 repeats:', polyq_peptide_length)

PYTHON

Number of amino acids in a polyglutamine with 36 repeats: 36.0

OUTPUT

print('Value:', amino_acids_per_codon, '- Type:', type(amino_acids_per_codon))

print('Value:', polyq_codons_length, '- Type:', type(polyq_codons_length))

print('Value:', polyq_peptide_length, '- Type:', type(polyq_peptide_length))

PYTHON

Value: 3 - Type: <class 'int'>

Value: 108 - Type: <class 'int'>

Value: 36.0 - Type: <class 'float'>

OUTPUT

Solution

The Boolean data type is named after the English mathematician and logician George Boole (1815–1864).

Logical Operations
An operation may sometimes involve a comparison. The result of these operations may be either True or False. This is known as the Boolean
or bool data type. In reality, however, computers record True and False as 1 and 0, respectively.

Operations with Boolean results are referred to as logical operations. Testing the results of such operations is referred to as truth value testing.

Given the two variables a and b as follows:

a = 17

b = 5

Boolean operations may be defined as outlined in this Table Routine logical operations in Python..

polyq_peptide_length = polyq_codons_length // amino_acids_per_codon

print('Number of amino acids in a polyglutamine with 36 repeats:', polyq_peptide_length)

print('Value:', amino_acids_per_codon, '- Type:', type(amino_acids_per_codon))

print('Value:', polyq_codons_length, '- Type:', type(polyq_codons_length))

print('Value:', polyq_peptide_length, '- Type:', type(polyq_peptide_length))

PYTHON

Number of amino acids in a polyglutamine with 36 repeats: 36

Value: 3 - Type: <class 'int'>

Value: 108 - Type: <class 'int'>

Value: 36 - Type: <class 'int'>

OUTPUT

INTERESTING FACT

Routine logical operations in Python.

We know that in algebra, the first identity (square of a binomial) is:

now given:

a = 15

b = 4

1. Calculate

Display the results in the following format:

y1 = XX

y2 = XX

2. Determine whether or not y_1 is indeed equal to y_2. Store the result of your test in another variable called equivalence. Display the
results in the following format:

Where a = XX and b = XX:

y1 is equal to y2: [True/False]

PRACTICE EXERCISE 12

(a + b = + 2ab +)2 a2 b2

= (a + by1)2

= + 2ab +y2 a2 b2

Solution

Solution

Negation
We can also use negation in logical operations. Negation in Python is implemented using not :

Negations in Python.

a = 15

b = 4

y_1 = (a + b) ** 2

y_2 = a ** 2 + 2 * a * b + b ** 2

print('y1 =', y_1)

print('y2 =', y_2)

PYTHON

y1 = 361

y2 = 361

OUTPUT

equivalence = y_1 == y_2

print('Where a =', a, ' and b=', b)

print('y1 is equal to y2:', equivalence)

PYTHON

Where a = 15 and b= 4

y1 is equal to y2: True

OUTPUT

Using the information from previous Practice Exercise 12:

1. Without using not , determine whether or not y_1 is not equal to y_2. Display the result of your test and store it in another variable
called inequivalent.

2. Negate inequivalent and display the result.

Solution

Solution

Disjunctions and Conjunctions:
Logical operations may be combined using conjunction with and and disjunction with or to create more complex logics:

PRACTICE EXERCISE 13

inequivalent = y_1 != y_2

print(inequivalent)

PYTHON

False

OUTPUT

inequivalent_negated = not inequivalent

print(inequivalent_negated)

PYTHON

True

OUTPUT

Disjunctions and Conjunctions in Python.

Given

a = True

b = False

c = True

Evaluate the following statements:

1. a == b

2. a == c

3. a or b

4. a and b

5. a or b and c

6. (a or b) and c

7. not a or (b and c)

8. not a or not(b and c)

9. not a and not(b and c)

10. not a and not(b or c)

Display the results in the following format:

1. [True/False]

2. [True/False]

 ...

Given that:

PRACTICE EXERCISE 14

a = True

b = False

c = True

PYTHON

Solution

Solution

Solution

Solution

print('1.', a == b)

PYTHON

1. False

OUTPUT

print('2.', a == c)

PYTHON

2. True

OUTPUT

print('3.', a or b)

PYTHON

3. True

OUTPUT

print('4.', a and b)

PYTHON

4. False

OUTPUT

Solution

Solution

Solution

Solution

print('5.', a or b and c)

PYTHON

5. True

OUTPUT

print('6.', (a or b) and c)

PYTHON

6. True

OUTPUT

print('7.', not a or (b and c))

PYTHON

7. False

OUTPUT

print('8.', not a or not(b and c))

PYTHON

8. True

OUTPUT

Solution

Solution

Complex logical operations:
It may help to break down more complex operations, or use parentheses to make them easier to read and write:

Complex Logical Operations in Python:

Notice that in the last example, all notations is essentially the same, and only varies in terms of the collective results as defined using
parentheses. Always remember that in a logical statement:

print('9.', not a and not(b and c))

PYTHON

9. False

OUTPUT

print('10.', not a and not(b or c))

PYTHON

10. False

OUTPUT

The statement in parentheses does not have precedence over the rest of the state (unlike mathematical statements). It merely
defines an independent part of the operation whose response is evaluated separately.

The precedence is established on a first-come-first-serve basis (from left to right).

Always use parentheses in longer statements for clarification.

In disjunctive statements (such as a > 5 or b > 5) if the first part is True, the second part is not checked. In other words, if a is
greater than 5, the computer does not proceed to check whether or not b is greater than 5.

In conjunctive statements (such as a > 5 and b > 5) the statement proceeds to the seconds part if the first part is True. In other
words, the result of a conjunctive statement is only True if both a and b are greater than 5. If a is False, the entire statement will
inevitably be False.

The longer the statement, the more difficult it would be to understand it properly, and by extension, the more likely it would be to
cause problems.

LOGICAL STATEMENT

a, b, c = 17, 5, 2 # Alternative method to define variables.

PYTHON

Disjunction: false OR true.

a < b or b > c

PYTHON

True

OUTPUT

Disjunction: true OR true.

a > b or b > c

PYTHON

True

OUTPUT

Conjunction: true AND true.

a > b and b > c

PYTHON

True

OUTPUT

Conjunction: false and true.

a < b and b > c

PYTHON

False

OUTPUT

Disjunction and conjunction: true OR false AND true

a > b or b < c and b < a

PYTHON

True

OUTPUT

Disjunction and conjunction: false OR true AND false

a < b or b > c and b > a

PYTHON

False

OUTPUT

Disjunctions and conjunction: false OR true AND true

a < b or b > c and b < a

PYTHON

True

OUTPUT

Disjunction and negated conjunction and conjunction:

true AND NOT false AND false

a < b or not b < c and b > a

PYTHON

These are only a few examples. There are endless possibilities, try them yourself and see how they work.

Some logical operations may be written in different ways. However, we should always use the notation that is most coherent in the
context of our code. If in doubt, use the simplest or shortest notation.

To that end, you may want to use variables to break complex statements down into smaller fragments:

False

OUTPUT

Disjunction and negated conjunction - similar to the

previous example: true AND NOT (false AND false)

a < b or not (b < c and b > a)

PYTHON

True

OUTPUT

REMEMBER

age_a, age_b = 15, 35

are_positive = age_a > 0 and age_b > 0

a_is_older = are_positive and (age_a > age_b)

b_is_older = are_positive and (age_a < age_b)

a_is_teenager = are_positive and 12 < age_a < 20

b_is_teenager = are_positive and 12 < age_b < 20

a_is_teenager and b_is_older

PYTHON

True

OUTPUT

a_is_teenager and a_is_older

PYTHON

Given

a = 3

b = 13

Test the following statements and display the results:

 or

 and

 and

where “|…|” represents the absolute value, and “ ” represents the remainder for the division of by .}

Display the results in the following format:

1. [True/False]

2. [True/False]

...

False

OUTPUT

a_is_teenager and (b_is_teenager or b_is_older)

PYTHON

True

OUTPUT

PRACTICE EXERCISE 15

< ba2

3 − < ba3

|25 − | > ba2

25 mod > ba2

25 mod > ba2 25 mod b < a

25 mod < ba2 25 mod b > a

12
a

a × 4 < b

n mod m n m

Solution

Solution

Solution

Solution

#Given that:

a = 3

b = 13

print('1.', a**2 < b)

PYTHON

1. True

OUTPUT

print('2.', (3 - a**3) < b)

PYTHON

2. True

OUTPUT

print('3.', abs(25 - a**2) > b)

PYTHON

3. True

OUTPUT

print('4.', (25 % a**2) > b)

PYTHON

4. False

OUTPUT

Solution

Solution

Solution

Exercises

print('5.', (25 % a**2) > b or (25 % b) < a)

PYTHON

5. False

OUTPUT

print('6.', (25 % a**2) < b and (25 % b) > a)

PYTHON

6. True

OUTPUT

print('7.', (12 / a) and (a * 4) < b)

PYTHON

7. True

OUTPUT

1. Write and execute a Python code to display your own name as an output in the Terminal.

2. Write and execute a Python code that:

Displays the text: Please press enter to continue..., and waits for the user to press enter.

Once the user presses enter, the program should display Welcome to my programme! before terminating.

3. We have an enzyme whose reaction velocity is at the substrate concentration of
. Work out the maximum reaction velocity or for this enzyme using the Michaelis-Menten equation:

Solution

Two key functions for I/O operations are print() and input()

Three most commonly used variables such as int, float, and str.

Variable scope can be local or global depending where they are being used.

Mathematical operations follow conventional rules of precedence

Logical operations provide results in Boolean (True or False)

Content from Conditional Statements

Last updated on 2024-08-05 | Edit this page

Download Chapter PDF

Download Chapter notebook (ipynb)

END OF CHAPTER EXERCISES

v = 50 mol ⋅ ⋅L−1 s−1

[S] = = 2.5 mol ⋅Km L−1 Vmax

v =
[S]Vmax

+ [S]Km

KEY POINTS

OVERVIEW

Questions

What are conditional statements?

How conditional statements are used to make decisions?

Why indentation is so important in Python?

Is there any hierarchical importance of conditional statements?

http://127.0.0.1:5508/03-conditional_statements.html
https://github.com/LearnToDiscover/Basic_Python/edit/main/episodes/03-conditional_statements.Rmd
https://github.com/LearnToDiscover/Basic_Python/edit/main/episodes/03-conditional_statements.Rmd
http://127.0.0.1:5508/03-conditional_statements.pdf
http://127.0.0.1:5508/03-conditional_statements.ipynb

Conditional Statements in PythonConditional Statements in Python

This chapter assumes that you are familiar with the following concepts in Python 3:

I/O Operations

Variables And Types

Mathematical Operation

When we construct logical expressions, we almost always do so because we need to test something. The definition of a process through which
we test our logical expressions and provide directives on how to proceed is known in computer science as a conditional statement. Conditional
statements are a feature of programming languages. This means that although their definitions and grammar may vary slightly from one
programming language to another, their principles are almost universally identical.

Being a high-level programming language, defining conditional statements is very easy in Python. Before we start, however, let us briefly review
the way conditional statements actually work. To help us with that, we use flowchart diagrams.

Objectives

Understand the logic behind using conditional statements.

Practice conditional statements.

Learning structuring code using correct indentation.

Understanding the hierarchy of conditional statements.

CHECKLIST

https://www.youtube.com/watch?v=oxB_XFfC4VY
http://127.0.0.1:5508/02-input_output.html#operations
http://127.0.0.1:5508/02-input_output.html#varTypes
http://127.0.0.1:5508/02-input_output.html#math_ops
https://en.wikipedia.org/wiki/Flowchart

The term conditional statements is often used in relation to imperative programming languages. In functional programming, however, it
is more common to refer to them as conditional expressions or conditional constructs. Python supports both imperative and functional
programming.

REMEMBER

We use algorithms in our life every day without realising it.

Suppose we enter a room poorly lit room to work. The first things that we notice is that the room is insufficiently lit. We check to see
whether or not the light is on; if not, we find the switch to turn on the light. Likewise, if the light is on, we go ahead and turn on the desk
lamp before we proceed with our business.

This scenario may be perceived as a set of processes. These processes include a set of procedures that may be outlined as
follows:

1. Action: Enter the room.

2. Input: Determine that the room is insufficiently lit.

3. Condition: Is the light switched on?

NO: Action: turn on the lights,

YES: Action: turn on the desk lamp.

4. Action: Proceed with our business.

Now that we know what procedures are involved, we can draw a flowchart of the process:

Flowchart

Programming is not merely a hard skill. It is the door to a different way of thinking that enables one to break complex procedures down
to simple, stepwise components and tasks. Flowcharts help us perceive processes as computers do — that is, one task or component at
a time. As we progress in programming, our brains develop the ability to think in a procedural way. This is called algorithmic thinking,
and is one of the most important soft-skills that a programmer can develop.

EXAMPLE: ALGORITHMS IN DAILY LIFE

PROCESSES OF ALGORITHMS

There are international competitions and comprehensive courses dedicated to this concept. At the end of the day, however, one can only
acquire a skill through practice.

If you are keen to learn more about algorithms and algorithmic thinking, or just want to try out some of the problems, you may want to
look into some of the past competition papers on Computational and Algorithmic Thinking (CAT) published by the Australian
Mathematics Trust.

Exercise is provided to give you an idea of the type of problems that may be tackled in a procedural way.

On a distant planet, the dominant carnivore, the zab, is nearing extinction. The number of zabs born in any year is one more than the
(positive) difference between the number born in the previous year and the number born in the year before that.

Examples

If 7 zabs were born last year and 5 the year before, 3 would be born this year.

If 7 zabs were born last year and 10 the year before, 4 would be born this year.

If 2 zabs were born in the year 2000 and 9 zabs were born in 2001. What is the first year after 2000 when just 1 zab will be born?

a. 2009

b. 2011

c. 2013

d. 2015

e. 2017

Credit: This question is taken from the 2011 Computational and Algorithmic Thinking (CAT) Competition held by the Australian
Mathematics Trust.}

ADVANCED TOPIC

PRACTICE EXERCISE 1

http://www.amt.edu.au/informatics/cat/

Solution

To obtain the answer, we may write an algorithm in a pseudo-code format as follows:

 let a_total = 2

 let b_total = 9

 let current_total = absolute(a_total - b_total) + 1

 let a_total = b_total

 let b_total = current_total

 let current_year = 2002

 do {

 current_total = absolute(a_total - b_total) + 1

 a_total = b_total

 b_total = current_total

 current_year = current_year + 1

} while current_total > 1

display current_year

Given:

 year = 2000; a_total = 2

 year = 2001; b_total= 9

the above process with repeat the section written in curly brackets for as long

as current_total > 1:

 current_year: 2002; a_total = 2, b_total = 9, current_total = 8

Is current_total > 1 ? Yes:

 current_year: 2003; a_total = 9, b_total = 8; current_total = 2

Is current_total > 1 ? Yes:

 current_year: 2004; a_total = 8; b_total = 2; current_total = 7

Is current_total > 1 ? Yes:

 current_year: 2005; a_total = 2; b_total = 7; current_total = 6

Is current_total > 1 ? Yes:

 current_year: 2006; a_total = 7; b_total = 6; current_total = 2

Is current_total > 1 ? Yes:

 current_year: 2007; a_total = 6; b_total = 2; current_total = 5

Is current_total > 1 ? Yes:

 current_year: 2008; a_total = 2; b_total = 5; current_total = 4

Is current_total > 1 ? Yes:

 current_year: 2009; a_total = 5; b_total = 4; current_total = 2

Is current_total > 1 ? Yes:

 current_year: 2010; a_total = 4; b_total = 2; current_total = 3

Is current_total > 1 ? Yes:

 current_year: 2011; a_total = 2; b_total = 3; current_total = 2

Is current_total > 1 ? Yes:

 current_year: 2012; a_total = 3; b_total = 2; current_total = 2

Is current_total > 1 ? Yes:

 current_year: 2013; a_total = 2; b_total = 2; current_total = 1

Is current_total > 1 ? No:

The correct answer is c) 2013.

If this algorithm/pseudo-code is translated to Python language, it will look like this:

a_total = 2

b_total = 9

current_year = 2002

current_total = abs(a_total - b_total) + 1

a_total = b_total

b_total = current_total

while (current_total > 1):

 current_total = abs(a_total - b_total) + 1

 a_total = b_total

 b_total = current_total

 current_year = current_year + 1

print(current_year)

PYTHON

2013

OUTPUT

There is almost always more than one answer to any algorithmic problem; some answer might even be more efficient than other. The
less repetition there is, the better more efficient an algorithm is considered to be.

Conditions in Python
if statments

To implement conditional statements in Python, we use 3 syntaxes:

To initiate the statement, we use the syntax if followed by the condition and a colon;

To create an alternative condition after the first condition has been defined, we use the syntax elif followed by the new condition and a
colon;

To introduce a default — i.e. where none of the above are True, we use the syntax else .

REMEMBER

students_present = 15

Conditional statement:

if students_present > 10: # Initiation

 # Directive (must be indented).

 print('More than 10 students are present.')

PYTHON

More than 10 students are present.

OUTPUT

students_present = 5

Conditional statement:

if students_present > 10: # Initiation

 # Directive (must be indented).

 print('More than 10 students are present.')

elif 0 < students_present < 10:

 print('Less than 10 students are present.')

PYTHON

Less than 10 students are present.

OUTPUT

https://docs.python.org/3/tutorial/controlflow.html#if-statements

We can use disjunctions or conjunctions, as discussed in topic Disjunctions and Conjunctions, to test for more than one condition at a
time.

Indentation Rule
PEP-8: Indentation
Always use 4 spaces for indentation. Indentations are how the Python interpreter determines the code hierarchy. A consistent hierarchy is
therefore essential for the interpreter to parse and execute our code.

The indented part of the code is known as a block. A block represents a part of the code that always “belongs” to (is the child process of) the first
unindented (dedented) line that precedes it. In other words, the action(s) within a conditional statement (actions that are subject to a specific
condition) must always be indented:

students_present = 0

Conditional statement:

if students_present > 10: # Initiation

 # Directive (must be indented).

 print('More than 10 students are present.')

elif 0 < students_present < 10: # Alternative condition

 # Alternative directive (must be indented).

 print('Less than 10 students are present.')

else: # Default (none of the conditions are met).

 # Directive (must be indented).

 print('There is no one!')

PYTHON

There is no one!

OUTPUT

REMEMBER

http://127.0.0.1:5508/02-input_output.html#disjun
https://www.python.org/dev/peps/pep-0008/#indentation

It is not a good practice to have too many nested indentation. This would make the code more difficult to read. A rule of thumb is that you should
not need more than 4 nested indentations in your code. If you do, you should reconsider the code structure to somehow simplify the process.

On that note, where possible, it is better to use conjunctions and disjunctions, or implement alternative conditions using elif instead of
creating nested conditional statements. We can therefore restructure the previous example in a better, more coherent way as follows:

value = 10

Statement A:

if value > 0:

 # First dedented line before the block.

 # This is a block, and it belongs to the

 # preceding "if" (Statement A):

 print('The value is positive.')

 # We can have nested blocks too.

 # Statement B:

 if value > 9:

 # First dedented line before the block.

 # This is another block (nested).

 # This block belongs to the preceding "if" (Statement B).

 print('The value is not a single digit.')

 # Introducing a default behaviour for Statement B:

 else:

 # This block belongs to the preceding "else".

 print('The value is a single digit.')

Introducing an alternative condition for Statement A:

elif value < 0:

This block belongs to the preceding "elif".

 print('The value is negative.')

Introducing a default behaviour for Statement A:

else:

This block belongs to the preceding "else".

 print('The value is zero.')

PYTHON

The value is positive.

The value is not a single digit.

OUTPUT

It is customary and also best practice to use 4 spaces for indentation in Python. It is also paramount that all indentations throughout the code
are consistent; that is, you may not use 4 spaces here and 3 spaces somewhere else in your code. Doing so will cause an IndentationError to
be raised. It is recommended to not use Tab to indent your code; it is regarded as a bad practice in Python.

value = 10

if value > 0:

 print('The value is: ') # Indented with 4 spaces.

 print('POSITIVE.') # Indented with 3 spaces.

File <STDIN>, line 5

 print('POSITIVE.') # Indented with 3 spaces.

 ^

IndentationError: unindent does not match any outer indentation level

Tab indentations represent different number of spaces on different computers and operating systems. It is therefore more than likely
that they will lead to IndentationError. Additionally, Python 3 disallows the mixing of tab and space indentations. Some Python
IDEs such as PyCharm automatically convert Tab indentations to 4 spaces. Some other IDEs (e.g. Jupyter) typically highlight Tab
indentations to explicitly distinguish them and thereby notify the programmer of their existence. However, more often than not, IDEs and
text editors tend to ignore this, which amounts to inconsistencies and subsequently IndentationError. This is a very common
difficulty that new Python programmers face, and can be very confusing if not handled correctly.

value = 10

if value > 9:

 print('The value is positive.')

 print('The value is not a single digit.')

elif value > 0:

 print('The value is positive.')

 print('The value is a single digit.')

elif value < 0:

 print('The value is negative.')

else:

 print('The value is zero.')

PYTHON

The value is positive.

The value is not a single digit.

OUTPUT

CALLOUT

In previous chapter, Practice Exercise 11, we explored the implication of CAG repeats in Huntington’s disease. We also created a
polynucleotide chain containing 36 repetition of the CAG codons.

Write a conditional statement that tests the length of a polyQ tract to determine the classification and the disease status based on the
following Table:

Using the technique you used in Practice Exercise 11, create 5 polyQ tracts containing 26, 15, 39, 32, 36, and 54 codons. Use these
polynucleotide chains to test your conditional statement.

Display the result for each chain in the following format:

PolyQ chain with XXX number of CAG codons:

Status: XXX

Classification: XXX

Hint: The length of a polyQ tract represents the number of nucleotides, not the number of CAG codons. See task 4 of Practice Exercise 11
for additional information.

PRACTICE EXERCISE 2

http://127.0.0.1:5508/02-input_output.html#diy:mathOpts:Huntington
http://127.0.0.1:5508/02-input_output.html#diy:mathOpts:Huntington
http://127.0.0.1:5508/02-input_output.html#diy:mathOpts:Huntington

Solution

#Constructing the codons:

glutamine_codon = 'CAG'

polyq_codons = glutamine_codon * 26

#Determining the length of our codon:

signle_codon = len('CAG')

len_polyq = len(polyq_codons)

polyq = len_polyq / signle_codon

#Constructing the conditional statement:

NORMAL = 26

INTERMEDIATE = 35

REDUCED_PENETRANCE = 40

classification = str()

status = str()

if polyq < NORMAL:

 classification, status = 'Normal', 'Unaffected'

elif polyq <= INTERMEDIATE:

 classification, status = 'Intermediate', 'Unaffected'

elif polyq <= REDUCED_PENETRANCE:

 classification, status = 'Reduced Penetrance', '+/- Affected'

else:

 classification, status = 'Full Penetrance', 'Affected'

#Displaying the results:

print('PolyQ chain with', polyq, 'number of CAG codons:')

print('Classification:', classification)

print('Status:', status)

#Repeat this with 15, 39, 32, 36, and 54 codons.

PYTHON

PolyQ chain with 26.0 number of CAG codons:

Classification: Intermediate

Status: Unaffected

OUTPUT

Hierarchy of conditional statements
The hierarchy of conditional statement is always the same. We start the statement with an if syntax (initiation). This is the only essential part
to implement a conditional statement. Other parts include the elif and the else syntaxes. These are the non-essential part, and we
implement these as and when needed. It is, however, important that we adhere to the correct order when we implement these:

Always start with the initiation syntax if .
Where needed, implement as many alternative conditions as necessary elif .
Where needed, implement a default behaviour using else }.

In an if...elif...else hierarchy, once one condition in the hierarchy is True, all subsequent conditions in that group are skipped and would
no longer be checked.

In the following example, the first condition is True, therefore its corresponding block is executed and the rest of this conditional statement is
skipped:

TATA_BOX = 'TATA'

promoter_region = 'GTAACTGTGGTATAATCGT'

if TATA_BOX in promoter_region:

 # This condition is "True", so this

 # and only this block is executed.

 print('There is a "TATA" box in this promoter region.')

else:

 # The last condition was "False", so this

 # block is skipped.

 print('There is no "TATA" box in this promoter region.')

PYTHON

There is a "TATA" box in this promoter region.

OUTPUT

We already know from subsection Logical Operations that the value of a boolean (bool) variable is either False or True.

We have also learned that in conditional statements, we use double equals} or ... == ... to test for equivalence. So naturally, one
could test for the truth value of a bool variables as follows:

This works, and it looks simple enough. However, this is the wrong approach for testing the value of bool variables and should not be
used. Whilst the answer is correct in the above example, using double equals for testing boolean variables can sometimes produce
incorrect results.

The correct way to test the truth value of a boolean variable is by using is as follows:

and the negative test is:

REMEMBER

variable = False

if variable == False:

 print('The variable is False.')

PYTHON

The variable is False.

OUTPUT

variable = False

if variable is False:

 print('The variable is False.')

PYTHON

The variable is False.

OUTPUT

variable = True

if variable is not False:

 print('The variable is True.')

PYTHON

The variable is True.

OUTPUT

http://127.0.0.1:5508/02-input_output.html#subsec:logicalOperatons

In short; as far as boolean variables are concerned, we should always use is or is not to test for their truth value in a conditional
statement.

Consequently, we can now write the example algorithm (room and light) as follows:

There are a few very popular shorthands in Python that you should be familiar with when writing or reading conditional statements:

In an if statement, Python expects the result of the condition to be True. As result of that, we can simplify the above example as follows:

Sometime, however, we might need to test for a False outcome. To do so, we can write a negated conditions as described in subsection
Negation instead:

light_status = False

if light_status is True:

 action = 'The light is on; you may want to turn off the desk light.'

else:

 action = 'The light is off... turn it on.'

print(action)

PYTHON

The light is off... turn it on.

OUTPUT

light_status = False

if light_status:

 action = 'The light is on; you may want to turn off the desk light.'

else:

 action = 'The light is off... turn it on.'

print(action)

PYTHON

The light is off... turn it on.

OUTPUT

http://127.0.0.1:5508/02-input_output.html#sec:logicalStatements:Negation

Note that we have changed the order of the condition

and added a "not" before "light_status"

if not light_status:

 action = 'The light is off... turn it on.'

else:

 action = 'The light is on; you may want to turn off the desk light.'

print(action)

PYTHON

The light is off... turn it on.

OUTPUT

Suppose we want to determine the classification of the final mark for a student.

The classification protocol is as follows:

Above 70%: First class.

Between 60% and 70%: Second class (upper division).

Between 50% and 60%: Second class (lower division).

Between 40% and 50%: Pass.

Below 40%: Fail.

Exercises

EXAMPLE: A FAMILIAR SCENARIO

mark = 63

Thresholds

first = 70

second_upper = 60

second_lower = 50

passed = 40 # "pass" is a syntax in Python.

if mark >= first:

 classification = 'First Class'

elif mark >= second_upper:

 classification = 'Second Class (upper division)'

elif mark >= second_lower:

 classification = 'Second Class (lower division)'

elif mark >= passed:

 classification = 'Pass'

else:

 classification = 'Fail'

print('The student obtained a', classification, 'in their studies.')

PYTHON

The student obtained a Second Class (upper division) in their studies.

OUTPUT

1. Protein Kinases have a phosphorylation site and a consensus sequence has been determined for these sites (Rust and Thompson,
2012). All the proteins incorporate either a Serine or a Threonine residue that gets phosphorylated. Naturally, the consensus
sequence for each protein varies slightly from that of other proteins.

When studying a polypeptide in the lab, a colleague realised that it has a phosphorylated Serine. So they tried to sequence the
polypeptide, and managed to obtain a sequence for the protein:

kinase_peptide = (

"PVWNETFVFNLKPGDVERRLSVEVWDWDRTSRNDFMGAMSFGVSELLK"

"APVDGWYKLLNQEEGEYYNVPVADADNCSLLQKFEACNYPLELYERVR"

"MGPSSSPIPSPSPSPTDPKRCFFGASPGRLHISDFSFLMRRRKGSFGK"

"VMLAERRGSDELYAIKILKKDVIVQDDDVDCTLVEKRVLALGGRGPGG"

"RPHFLTQLHSTFQTPDRLYFVMEYVTGGDLMYHIQQLGKFKEPHAAFY"

"AAEIAIGLFFLHNQGIIYRDLKLDNVMLDAEGHIKITDFGMCKENVF"

)

Desperate to find a match, and knowing that we are good at doing computer stuff, they asked us if we can help them identify what
protein kinase does the sequence correspond to?

So we extract the consensus sequence of 3 protein kinases from the paper:

PKC- : either RKGSFRR or RRRSFRR

PKC- : either RRRKGSF or RRRKKSF

DMPK-E: one of KKRRRSL, RKRRRSL, KKRRRSV, or RKRRRSV.

Now all we need is to write a conditional statement in Python to identify which of the above protein kinases, if any, does our sequence
correspond to. That is, which one of the consensus peptides exists in our mystery sequence?

If there is a match, our programme should display the name of the corresponding protein kinase; otherwise, it should say No matches
found for good measures.

Solution

Python used if, elif and else as conditional statements.

In Python, there is an indentation rule of 4 spaces.

The hierarchy of conditional statement is always the same.

Content from Introduction to Arrays

END OF CHAPTER EXERCISES

η

γ

KEY POINTS

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3176959/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3176959/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3176959/
http://127.0.0.1:5508/04-arrays.html

Last updated on 2024-10-14 | Edit this page

Download Chapter PDF

Download Chapter notebook (ipynb)

Mandatory Lesson Feedback Survey

Arrays: Python ListsArrays: Python Lists

OVERVIEW

Questions

What are the different types of arrays?

How is data stored and retrieved from an array?

What are nested arrays?

What are tuples?

Objectives

Understanding difference between lists and tuples.

Understanding operations on arrays.

Storing multidimensional data.

Understanding the concepts of mutability and immutability.

https://github.com/LearnToDiscover/Basic_Python/edit/main/episodes/04-arrays.Rmd
https://github.com/LearnToDiscover/Basic_Python/edit/main/episodes/04-arrays.Rmd
http://127.0.0.1:5508/04-arrays.pdf
http://127.0.0.1:5508/04-arrays.ipynb
https://docs.google.com/forms/d/e/1FAIpQLSdr0capF7jloJhPH3Pki1B3LZoKOG16poOpuVJ7SL2LkwLHQA/viewform?pli=1
https://www.youtube.com/watch?v=RlhGPZv8fZI

Arrays: Nested Arrays in PythonArrays: Nested Arrays in Python

Arrays: Numpy Arrays in PythonArrays: Numpy Arrays in Python

Variables and Types

Logical Operations

Conditional Statements

So far, we have been using variables to store individual values. In some circumstances, we may need to access multiple values in order to
perform operations. On such occasions, defining a variable for every single value can become very tedious. To address this, we use arrays.

Arrays are variables that hold any number of values. Python provides three types of built-in arrays. These are: list, tuple, and set. There are
a several common features among all arrays in Python; however, each type of array enjoys its own range of unique features that facilitates
specific operations.

Each item inside an array may be referred to as an item or a member of that array.

PREREQUISITE

REMEMBER

https://www.youtube.com/watch?v=KiMQiN4CN8s
https://www.youtube.com/watch?v=id72qTBmCEY
http://127.0.0.1:5508/02-input_output.html#varTypes
http://127.0.0.1:5508/02-input_output.html#subsec:logicalOperatons
http://127.0.0.1:5508/03-conditional_statements.html

Lists
Resource for Lists

Lists are the most frequently-used type of arrays in Python. It is therefore important to understand how they work, and how can we use them,
and the features they offer, to our advantage.

The easiest way to imagine how a list works, is to think of it as a table that can have any number of rows. This is akin to a spreadsheet with
one column. For instance, suppose we have a table with four rows in a spreadsheet application, as follows:

The number of rows in an array determines its length. The above table has four rows; therefore it is said to have a length of 4.

Implementation

In order to implement a list in Python, we place values into this list and separate them from one another using commas inside square
brackets: list = [1,2,3].

REMEMBER

table = [5, 21, 5, -1]

print(table)

PYTHON

[5, 21, 5, -1]

OUTPUT

print(type(table))

PYTHON

https://docs.python.org/3/tutorial/datastructures.html#more-on-lists

Implement a list array called fibonacci, whose members represent the first 8 numbers of the Fibonacci sequence as follows:

FIBONACCI NUMBERS (FIRST 8)

1 1 2 3 5 8 13 21

Solution

Indexing
In an array, an index is an integer (whole number) that corresponds to a specific item in that array.

You can think of an index as a unique reference or key that corresponds to a specific row in a table. We don’t always write the row number when
we create a table. However, we always know that the third row of a table refers to us starting from the first row (row #1), counting three rows
down and there we find the third row.

Python, however, uses what we term zero-based indexing. We don’t count the first row as row #1; instead, we consider it to be row #0. As a
consequence of starting from #0, we count rows in our table down to row #2 instead of #3 to find the third row. So our table may,essentially, be
visualised as follows:

<class 'list'>

OUTPUT

PRACTICE EXERCISE 1

fibonacci = [1, 1, 2, 3, 5, 8, 13, 21]

PYTHON

https://en.wikipedia.org/wiki/Fibonacci_number

Python uses zero-based indexing system. This means that the first row of an array, regardless of its type, is always referred to with
index #0.

With that in mind, we can use the index for each item in the list, in order to retrieve it from a list.

Given the following list of four members stored in a variable called table:

table = [5, 21, 5, -1]

REMEMBER

we can visualise the referencing protocol in Python as follows:

As illustrated in this figure; in order to retrieve a member of an array through its index, we write the name of the variable immediately followed
by the index value inside a pair of square brackets — e.g. table[2]. Note, you may have noticed our interchangeable use of the terms ‘list’ and
‘array’. That is because a list, in Python, can be considered as a type of dynamic array (they can increase or decrease in size, as required).

print(table[2])

PYTHON

5

OUTPUT

print(table[0])

PYTHON

5

OUTPUT

Retrieve and display the 5 Fibonacci number from the list you created in the previous Practice Exercise 1.

Solution

It is sometimes more convenient to index an array, backwards — that is, to reference the members from the bottom of the array, first. This is
termed negative indexing, and is particularly useful when we are dealing with lengthy arrays. The indexing system in Python support both
positive and negative indexing systems.

The table above therefore may also be represented, as follows:

item = table[3]

print(item)

PYTHON

-1

OUTPUT

PRACTICE EXERCISE 2

th

print(fibonacci[4])

PYTHON

5

OUTPUT

Unlike the normal indexing system, which starts from #0, negative indexes start from #-1. This serves to definitely highlight which
indexing system is being used.

If the index is a negative number, the indices are counted from the end of the list. We can implement negative indices in the same way as
positive indices:

REMEMBER

print(table[-1])

PYTHON

-1

OUTPUT

print(table[-2])

PYTHON

5

OUTPUT

We know that in table, index #-3 refers the same value as index #1. So let us go ahead and test this:

If the index requested is larger than the length of the list minus one, an IndexError will be raised:

The values stored in a list may be referred to as the members of that list.

Retrieve and display the last Fibonacci number from the list you created in Practice Exercise 1.

print(table[-3])

PYTHON

21

OUTPUT

equivalence = table[-3] == table[1]

print(equivalence)

PYTHON

True

OUTPUT

print(table[4])

PYTHON

IndexError: list index out of range

OUTPUT

REMEMBER

PRACTICE EXERCISE 3

Solution

Slicing
It is also possible that you may wish to retrieve more than one value from a list at a time, as long as the values are in consecutive rows. This
process is is termed , and may be visualised, as follows:

print(fibonacci[-1])

PYTHON

21

OUTPUT

Python is a non-inclusive language. This means that in table[a:b], a slice includes all the values from, and including index a right down
to, but excluding, index b.

Given a list representing the above table:

table = [5, 21, 5, -1]

we may retrieve a slice of table, as follows:

print(table[0:2])

If the first index of a slice is #0, the slice may also be written as:

Negative slicing is also possible:

REMEMBER

my_slice = table[1:3]

print(my_slice)

PYTHON

[21, 5]

OUTPUT

print(table[:2])

PYTHON

[5, 21]

OUTPUT

Retrieves every item from the first member down

to, but excluding the last one:

print(table[:-1])

PYTHON

If the second index of a slice represents the last index of a list, it would be written as:

We may also store indices and slices in variables:

The slice() function may also be used to create a slice variable:

[5, 21, 5]

OUTPUT

print(table[1:-2])

PYTHON

[21]

OUTPUT

print(table[2:])

PYTHON

[5, -1]

OUTPUT

print(table[-3:])

PYTHON

[21, 5, -1]

OUTPUT

start, end = 1, 3

new_table = table[start:end]

print(new_table)

PYTHON

[21, 5]

OUTPUT

Retrieve and display a slice of Fibonacci numbers from the list you created in Practice Exercise 1 that includes all the members from
the second number onwards — i.e. the slice must not include the first value in the list.

Solution

Methods are features of Object-Oriented Programming (OOP) - a programming paradigm that we do not discuss in the context of this
course. You can think of a method as a function that is associated with a specific type. The job of a method is to provide a certain
functionality unique to the type it is associated with. In this case, .index() is a method of type list that, given a value, finds and
produces its index from the list.

From value to index
Given a list entitled table as:

we can also determine the index of a specific value. To do so, we use the .index() method:

my_slice = slice(1, 3)

print(table[my_slice])

PYTHON

[21, 5]

OUTPUT

PRACTICE EXERCISE 4

print(fibonacci[1:])

PYTHON

[1, 2, 3, 5, 8, 13, 21]

OUTPUT

NOTE

table = [5, 21, 5, -1]

PYTHON

https://en.wikipedia.org/wiki/Object-oriented_programming

If a value is repeated more than once in the list, the index corresponding to the first instance of that value is returned:

If a value does not exist in the list, using .index() will raise a ValueError:

print(table.index(21))

PYTHON

1

OUTPUT

last_item = table.index(-1)

print(last_item)

PYTHON

3

OUTPUT

print(table.index(5))

PYTHON

0

OUTPUT

print(table.index(9))

PYTHON

ValueError: 9 is not in list

OUTPUT

Find and display the index of these values from the list of Fibonacci numbers that you created in Practice Exercise 1:

1

5

21

Solution

Mutability
Mutability is a term that we use to refer to a structure’s capability of being change, once it is created. Arrays of type list are modifiable. That is,
we can add new values, change the existing ones or remove them from the array, altogether. Variable types that allow their contents to be
modified are referred to as mutable types in programming.

Addition of new members
Given a list called table, we can add new values to it using .append() :

PRACTICE EXERCISE 5

print(fibonacci.index(1))

print(fibonacci.index(5))

print(fibonacci.index(21))

PYTHON

0

4

7

OUTPUT

table.append(29)

print(table)

PYTHON

[5, 21, 5, -1, 29]

OUTPUT

Sometimes, it may be necessary to insert a value at a specific position or index in a list. To do so, we may use .insert() , which takes two
input arguments; the first representing the index, and the second the value to be inserted:

Given fibonacci - the list representing the first 8 numbers in the Fibonacci sequence that you created in Practice Exercise 1:

1. The 10 number in the Fibonacci sequence is 55. Add this value to fibonacci.

2. Now that you have added 55 to the list, it no longer provides a correct representation of the Fibonacci sequence. Alter fibonacci
and insert the missing number such that the list correctly represents the first 10 numbers in the Fibonacci sequence, as follows:

FIBONACCI NUMBERS (FIRST 8)

1 1 2 3 5 8 13 21 34 55

Solution

table.append('a text')

print(table)

PYTHON

[5, 21, 5, -1, 29, 'a text']

OUTPUT

table.insert(3, 56)

print(table)

PYTHON

[5, 21, 5, 56, -1, 29, 'a text']

OUTPUT

PRACTICE EXERCISE 6

th

fibonacci.append(55)

PYTHON

Solution

Modification of members
Given a list as:

we can also modify the exiting value or values inside a list. This process is sometimes referred to as item assignment:

It is also possible to perform item assignment over a slice containing any number of values. Note that when modifying a slice, the replacement
values must be the same length as the slice we are trying to replace:

fibonacci.insert(8, 34)

PYTHON

table = [5, 21, 5, 56, -1, 29, 'a text']

PYTHON

Changing the value of the 2nd member.

table[1] = 174

print(table)

PYTHON

[5, 174, 5, 56, -1, 29, 'a text']

OUTPUT

table[-4] = 19

print(table)

PYTHON

[5, 174, 5, 19, -1, 29, 'a text']

OUTPUT

Create a list containing the first 10 prime numbers as:

primes = [2, 3, 5, 11, 7, 13, 17, 19, 23, 29]

Values 11 and 7, however, have been misplaced in the sequence. Correct the order by replacing the slice of primes that represents [11,
7] with [7, 11].

print('Before:', table)

replacement = [-38, 0]

print('Replacement length:', len(replacement))

print('Replacement length:', len(table[2:4]))

The replacement process:

table[2:4] = replacement

print('After:', table)

PYTHON

Before: [5, 174, 5, 19, -1, 29, 'a text']

Replacement length: 2

Replacement length: 2

After: [5, 174, -38, 0, -1, 29, 'a text']

OUTPUT

Using the existing value to determine the new value:

table[2] = table[2] + 50

print(table)

PYTHON

[5, 174, 12, 0, -1, 29, 'a text']

OUTPUT

PRACTICE EXERCISE 7

https://en.wikipedia.org/wiki/Prime_number

Solution

Removal of members
When removing a value from a list, we have two options depending on our needs: we either remove the member and retain the value in
another variable, or we remove it and dispose of the value, completely.

To remove a value from a list without retaining it, we use .remove() . The method takes one input argument, which is the value we would like
to remove from our list:

Alternatively, we can use del ; a Python syntax that we can use, in this context, to delete a specific member using its index:

As established above, we can also delete a member and retain its value. Of course we can do so by holding the value inside another variable
before deleting it.

Whilst this is a valid approach, Python’s list provide us with .pop() to simplify the process even further. The method takes one input
argument for the index of the member to be removed. It removes the member from the list and returns its value, so that we can retain it in a
variable:

primes = [2, 3, 5, 11, 7, 13, 17, 19, 23, 29]

primes[3:5] = [7, 11]

PYTHON

table.remove(174)

print(table)

PYTHON

[5, 12, 0, -1, 29, 'a text']

OUTPUT

del table[-1]

print(table)

PYTHON

[5, 12, 0, -1, 29]

OUTPUT

removed_value = table.pop(2)

print('Removed value:', removed_value)

print(table)

PYTHON

We know that the nucleotides of DNA include Adenosine, Cytosine, Threonine and Glutamine: A, C, T, and G.

Given a list representing a nucleotide sequence:

strand = ['A', 'C', 'G', 'G', 'C', 'M', 'T', 'A']

1. Find the index of the invalid nucleotide in strand.

2. Use the index you found to remove the invalid nucleotide from strand and retain the value in another variable. Display the result as:

Removed from the strand: X

New strand: [X, X, X, ...]

3. What do you think happens once we run the following code, and why? What would be the final result displayed on the screen?

strand.remove('G')

print(strand)

Solution

Removed value: 0

[5, 12, -1, 29]

OUTPUT

PRACTICE EXERCISE 8

strand = ['A', 'C', 'G', 'G', 'C', 'M', 'T', 'A']

outlier_index = strand.index('M')

PYTHON

Solution

Solution

One of the two G nucleotides, the one at index 2 of the original array, is removed. This means that the .remove() method removes only
first instance of a member in an array. The output would therefore be:

['A', 'C', 'G', 'C', 'M', 'T', 'A']

Method–mediated operations
We already know that methods are akin to functions that are associated with a specific type. In this subsection, we will be looking at how
operations are performed using methods. We will not be introducing anything new, but will recapitulate what we already know from, but from
different perspectives.

So far in this chapter, we have learned how to perform different operations on list arrays in Python. You may have noticed that some
operations return a result that we can store in a variable, while others change the original value.

With that in mind, we can divide operations performed using methods into two general categories:

1. Operations that return a result without changing the original array:

2. Operations that use specific methods to change the original array, but do not necessarily return anything (in-place operations):

outlier_value = strand.pop(outlier_index)

print('Removed from the strand:', outlier_value)

print('New strand:', strand)

PYTHON

Removed from the strand: M

New strand: ['A', 'C', 'G', 'G', 'C', 'T', 'A']

OUTPUT

table = [1, 2, 3, 4]

index = table.index(3)

print(index)

print(table)

PYTHON

2

[1, 2, 3, 4]

OUTPUT

If we attempt to store the output of an operation that does not a return result, and store this into a variable, the variable will be created, but its
value will be set to None, by default:

It is important to know the difference between these types of operations. So as a rule of thumb, when we use methods to perform an operation,
we can only change the original value if it is an instance of a mutable type. See Table to find out which of Python’s built-in types are mutable.

The methods that are associated with immutable objects always return the results and do not provide the ability to alter the original value:

In-place operation on a mutable object of type list:

In-place operation on an immutable object of type str:

table = [1, 2, 3, 4]

table.append(5)

print(table)

PYTHON

[1, 2, 3, 4, 5]

OUTPUT

result = table.append(6)

print(result)

print(table)

PYTHON

None

[1, 2, 3, 4, 5, 6]

OUTPUT

table = [5, 6, 7]

table.remove(6)

print(table)

PYTHON

[5, 7]

OUTPUT

string = '567'

string.remove(20)

PYTHON

http://127.0.0.1:5508/02-input_output.html#fig:nativeTypes

Normal operation on a mutable object of type list:

Normal operation on a mutable object of type list:

List members
A list is a collection of members that are independent of each other. Each member has its own type, and is therefore subject to the properties
and limitations of that type:

AttributeError: 'str' object has no attribute 'remove'

OUTPUT

print(string)

PYTHON

567

OUTPUT

table = [5, 6, 7]

ind = table.index(6)

print(ind)

PYTHON

1

OUTPUT

string = '567'

ind = string.index('6')

print(ind)

PYTHON

1

OUTPUT

table = [1, 2.1, 'abc']

print(type(table[0]))

print(type(table[1]))

print(type(table[2]))

PYTHON

http://127.0.0.1:5508/02-input_output.html#varTypes

For instance, mathematical operations may be considered a feature of all numeric types demonstrated in Table. However, unless in specific
circumstance described in subsection Non-numeric values, such operations do not apply to instance of type str.

A list in Python plays the role of a container that may incorporate any number of values. Thus far, we have learned how to handle individual
members of a list. In this subsection, we will be looking at several techniques that help us address different circumstances where we look at a
list from a ‘wholist’ perspective; that is, a container whose members are unknown to us.

Membership test
Membership test operations [advanced]

We can check to see whether or not a specific value is a member of a list using the operator syntax in :

The results may be stored in a variable:

<class 'int'>

<class 'float'>

<class 'str'>

OUTPUT

table = [1, 2.1, 'abc']

table[0] += 1

table[-1] += 'def'

print(table)

PYTHON

[2, 2.1, 'abcdef']

OUTPUT

items = [1, 2.4, 'John', 5, 4]

print(2.4 in items)

PYTHON

True

OUTPUT

print(3 in items)

PYTHON

False

OUTPUT

http://127.0.0.1:5508/02-input_output.html#fig:nativeTypes
http://127.0.0.1:5508/02-input_output.html#subsubsec:mathematicalOperations:nonNumerics
https://docs.python.org/3/reference/expressions.html#membership-test-operations

Similar to any other logical expression, we can negate membership tests by using :

has_five = 5 in items

print(has_five)

PYTHON

True

OUTPUT

expr = 10 not in items

print(expr)

PYTHON

True

OUTPUT

expr = 5 not in items

print(expr)

PYTHON

False

OUTPUT

http://127.0.0.1:5508/02-input_output.html#subsec:logicalOperatons
http://127.0.0.1:5508/02-input_output.html#sec:logicalStatements:Negation

When testing against str values — i.e. text; don’t forget that in programming, operations involving texts are always case-sensitive.

For numeric values, int and float may be used interchangeably:

Similar to other logical expression, membership tests may be incorporated into conditional statements:

REMEMBER

items = [1, 2.4, 'John', 5, 4]

john_capital = 'John'

john_small = 'john'

print(john_capital in items)

print(john_small in items)

PYTHON

True

False

OUTPUT

print(4 in items)

PYTHON

True

OUTPUT

print(4.0 in items)

PYTHON

True

OUTPUT

if 'John' in items:

 print('Hello John')

else:

 print('Hello')

PYTHON

http://127.0.0.1:5508/02-input_output.html#subsec:logicalOperatons

Given a list of randomly generated peptide sequences as:

Determine whether or not each of the following sequences exist in peptides; and if so, what is their corresponding index:

IVADH

CMGFT

DKAKL

THGYP

NNVSR

Display the results in the following format:

Sequence XXXXX was found at index XX

Solution

Hello John

OUTPUT

PRACTICE EXERCISE 9

peptides = [

 'FAEKE', 'DMSGG', 'CMGFT', 'HVEFW', 'DCYFH', 'RDFDM', 'RTYRA',

 'PVTEQ', 'WITFR', 'SWANQ', 'PFELC', 'KSANR', 'EQKVL', 'SYALD',

 'FPNCF', 'SCDYK', 'MFRST', 'KFMII', 'NFYQC', 'LVKVR', 'PQKTF',

 'LTWFQ', 'EFAYE', 'GPCCQ', 'VFDYF', 'RYSAY', 'CCTCG', 'ECFMY',

 'CPNLY', 'CSMFW', 'NNVSR', 'SLNKF', 'CGRHC', 'LCQCS', 'AVERE',

 'MDKHQ', 'YHKTQ', 'HVRWD', 'YNFQW', 'MGCLY', 'CQCCL', 'ACQCL'

]

PYTHON

sequence = "IVADH"

if sequence in peptides:

 index = peptides.index(sequence)

 print('Sequence', sequence, 'was found at index', index)

PYTHON

Solution

Solution

Solution

Solution

Length
Built-in functions: len

sequence = "CMGFT"

if sequence in peptides:

 index = peptides.index(sequence)

 print('Sequence', sequence, 'was found at index', index)

PYTHON

Sequence CMGFT was found at index 2

OUTPUT

sequence = "DKAKL"

if sequence in peptides:

 index = peptides.index(sequence)

 print('Sequence', sequence, 'was found at index', index)

PYTHON

sequence = "THGYP"

if sequence in peptides:

 index = peptides.index(sequence)

 print('Sequence', sequence, 'was found at index', index)

PYTHON

sequence = "NNVSR"

if sequence in peptides:

 index = peptides.index(sequence)

 print('Sequence', sequence, 'was found at index', index)

PYTHON

Sequence NNVSR was found at index 30

OUTPUT

https://docs.python.org/3.6/library/functions.html#len

The number of members contained within a list defines its length. Similar to the length of str values as discussed in mathematical operations
Practice Exercise 8 and Practice Exercise 11, we use the built-in function len() also to determine the length of a list:

The len() function always returns an integer value (int) equal to, or greater than, zero. We can store the length in a variable and use it in
different mathematical or logical operations:

We can also use the length of an array in conditional statements:

items = [1, 2.4, 'John', 5, 4]

print(len(items))

PYTHON

5

OUTPUT

print(len([1, 5, 9]))

PYTHON

3

OUTPUT

table = [1, 2, 3, 4]

items_length = len(items)

table_length = len(table)

print(items_length + table_length)

PYTHON

9

OUTPUT

print(len(table) > 2)

PYTHON

True

OUTPUT

http://127.0.0.1:5508/02-input_output.html#math_ops
http://127.0.0.1:5508/02-input_output.html#diy:mathsI
http://127.0.0.1:5508/02-input_output.html#diy:mathOpts:Huntington
http://127.0.0.1:5508/02-input_output.html#math_ops
http://127.0.0.1:5508/02-input_output.html#subsec:logicalOperatons
http://127.0.0.1:5508/03-conditional_statements.html

Both in and len() may be used in reference to any type of array or sequence in Python.

See Table to find out which of Python’s built-in types are regarded as a sequence.

Given the list of random peptides defined in Practice Exercise 9:

1. Define a list called overlaps, containing the sequences whose presence in peptides you previously confirmed in Practice Exercise
9.

2. Determine the length of peptides.

3. Determine the length of overlaps.

Display yours results as follows:

overlaps = ['XXXXX', 'XXXXX', ...]

Length of peptides: XX

Length of overlaps: XX

students = ['Julia', 'John', 'Jane', 'Jack']

present = ['Julia', 'John', 'Jane', 'Jack', 'Janet']

if len(present) == len(students):

 print('All the students are here.')

else:

 print('One or more students are not here yet.')

PYTHON

One or more students are not here yet.

OUTPUT

REMEMBER

PRACTICE EXERCISE 10

http://127.0.0.1:5508/02-input_output.html#fig:nativeTypes

Solution

Solution

overlaps = list()

sequence = "IVADH"

if sequence in peptides:

 overlaps.append(sequence)

sequence = "CMGFT"

if sequence in peptides:

 overlaps.append(sequence)

sequence = "DKAKL"

if sequence in peptides:

 overlaps.append(sequence)

sequence = "THGYP"

if sequence in peptides:

 overlaps.append(sequence)

sequence = "NNVSR"

if sequence in peptides:

 overlaps.append(sequence)

print('overlaps:', overlaps)

PYTHON

overlaps: ['CMGFT', 'NNVSR']

OUTPUT

print('Length of peptides:', len(peptides))

PYTHON

Length of peptides: 42

OUTPUT

Solution

Weak References and Copies
In our discussion on mutability, we also explored some of the in-place operations such as .remove() and .append() , that we can use to
modify an existing list. The use of these operations gives rise the following question: What if we need to perform an in-place operation, but
also want to preserve the original array?

In such cases, we create a deep copy of the original array before we call the method and perform the operation.

Suppose we have:

A weak reference for table_a, also referred to as an alias or a symbolic link, may be defined as follows:

Now if we perform an in-place operation on only one of the two variables (the original or the alias) as follows:

we will effectively change both of them:

print('Length of overlaps:', len(overlaps))

PYTHON

Length of overlaps: 2

OUTPUT

table_a = [1, 2, 3, 4]

PYTHON

table_b = table_a

print(table_a, table_b)

PYTHON

[1, 2, 3, 4] [1, 2, 3, 4]

OUTPUT

table_a.append(5)

PYTHON

print(table_a, table_b)

PYTHON

[1, 2, 3, 4, 5] [1, 2, 3, 4, 5]

OUTPUT

This is useful if we need to change the name of a variable under certain conditions to make our code more explicit and legible; however, it does
nothing to preserve an actual copy of the original data.

To retain a copy of the original array, however, we must perform a deep copy as follows:

where table_c represents a deep copy of table_b.

In this instance, performing an in-place operation on one variable would not have any impacts on the other:

where both the original array and its weak reference (table_a and table_b) changed without influencing the deep copy (table_c).

There is also a shorthand for the .copy() method to create a deep copy. As far as arrays of type list are concerned, writing:

new_table = original_table[:]

is exactly the same as writing:

new_table = original_table.copy()

Here is an example:

table_c = table_b.copy()

print(table_b, table_c)

PYTHON

[1, 2, 3, 4, 5] [1, 2, 3, 4, 5]

OUTPUT

table_b.append(6)

print(table_a, table_b, table_c)

PYTHON

[1, 2, 3, 4, 5, 6] [1, 2, 3, 4, 5, 6] [1, 2, 3, 4, 5]

OUTPUT

table_a = ['a', 3, 'b']

table_b = table_a

table_c = table_a.copy()

table_d = table_a[:]

table_a[1] = 5

print(table_a, table_b, table_c, table_d)

PYTHON

Whilst both the original array and its weak reference (table_a and table_b) changed in this example; the deep copies (table_c and table_d) have
remained unchanged.

When defining a consensus sequence, it is common to include annotations to represent ambiguous amino acids. Four such annotations
are as follows:

Given a list of amino acids as:

1. Use amino_acids to create an independent list called amino_acids_annotations that contains all the standard amino acids.

2. Add to amino_acids_annotations the 1-letter annotations for the ambiguous amino acids, as outlined in the table.

3. Evaluate the lengths for amino_acids and amino_acids_annotations and retain the result in a new list called lengths.

4. Using logical operations, test the two values stored in lengths for equivalence and display the result as a boolean (True or False)
output.

['a', 5, 'b'] ['a', 5, 'b'] ['a', 3, 'b'] ['a', 3, 'b']

OUTPUT

PRACTICE EXERCISE 11

amino_acids = [

 'A', 'R', 'N', 'D', 'C', 'E', 'Q', 'G', 'H', 'I',

 'L', 'K', 'M', 'F', 'P', 'S', 'T', 'W', 'Y', 'V'

]

PYTHON

http://127.0.0.1:5508/02-input_output.html#subsec:logicalOperatons

Solution

Solution

Solution

Solution

Conversion to list
As highlighted earlier in this section, arrays in Python can contain any value - regardless of type. We can exploit this feature to extract some
interesting information about the data we store in an array.

To that end, we can convert any sequence to a list. See Table to find out which of the built-in types in Python are considered to be a sequence.

Suppose we have the sequence for Protein Kinase A Gamma (catalytic) subunit for humans as follows:

amino_acid_annotations = amino_acids.copy()

PYTHON

ambiguous_annotations = ['X', 'B', 'Z', 'J']

amino_acid_annotations.extend(ambiguous_annotations)

PYTHON

lengths = [len(amino_acids), len(amino_acid_annotations)]

PYTHON

equivalence = lengths[0] == lengths[1]

print(equivalence)

PYTHON

False

OUTPUT

http://127.0.0.1:5508/02-input_output.html#sec:conversionType
http://127.0.0.1:5508/02-input_output.html#fig:nativeTypes
https://www.ncbi.nlm.nih.gov/protein/AAC41690.1?report=fasta

We can now convert our sequence from its original type of str to list by using list() as a function. Doing so will automatically decompose
the text down into individual characters:

Multiple lines of text may be split into

several lines inside parentheses:

human_pka_gamma = (

 'MAAPAAATAMGNAPAKKDTEQEESVNEFLAKARGDFLYRWGNPAQNTASSDQFERLRTLGMGSFGRVMLV'

 'RHQETGGHYAMKILNKQKVVKMKQVEHILNEKRILQAIDFPFLVKLQFSFKDNSYLYLVMEYVPGGEMFS'

 'RLQRVGRFSEPHACFYAAQVVLAVQYLHSLDLIHRDLKPENLLIDQQGYLQVTDFGFAKRVKGRTWTLCG'

 'TPEYLAPEIILSKGYNKAVDWWALGVLIYEMAVGFPPFYADQPIQIYEKIVSGRVRFPSKLSSDLKDLLR'

 'SLLQVDLTKRFGNLRNGVGDIKNHKWFATTSWIAIYEKKVEAPFIPKYTGPGDASNFDDYEEEELRISIN'

 'EKCAKEFSEF'

)

print(type(human_pka_gamma))

PYTHON

<class 'str'>

OUTPUT

The function "list" may be used to convert string

variables into a list of characters:

pka_list = list(human_pka_gamma)

print(pka_list)

PYTHON

['M', 'A', 'A', 'P', 'A', 'A', 'A', 'T', 'A', 'M', 'G', 'N', 'A', 'P', 'A', 'K', 'K', 'D', 'T', 'E', 'Q', 'E

OUTPUT

Ask the user to enter a sequence of single-letter amino acids in lower case. Convert the sequence to list and:

1. Count the number of serine and threonine residues and display the result in the following format:

Total number of serine residues: XX

Total number of threonine residues: XX

2. Check whether or not the sequence contains both serine and threonine residues:

If it does, display:

The sequence contains both serine and threonine residues.

if it does not, display:

The sequence does not contain both serine and threonine residues.

Solution

sequence_str = input('Please enter a sequence of signle-letter amino acids in lower-case: ')

sequence = list(sequence_str)

ser_count = sequence.count('s')

thr_count = sequence.count('t')

print('Total number of serine residues:', ser_count)

print('Total number of threonine residues:', thr_count)

PRACTICE EXERCISE 12

Solution

if ser_count > 0 and thr_count > 0:

 response_state = ''

else:

 response_state = 'not'

print(

 'The sequence does',

 'response_state',

 'contain both serine and threonine residues.'

)

Generators represent a specific type in Python whose results are not immediately evaluated. A generator is a specific type of iterable
(an object capable of returning elements, one at a time), that can return its items, lazily. This means that it generates values on the fly,
and only as and when required in your program. Generators can be particularly useful when working with large datasets, where loading
all the data into memory can be computationally expensive. Using genarators with such data, can help to process it in more
manageable units.

Generators’ lazy evaluation in functional programming is often used in the context of a for-loop: which we will explore in a later L2D
lesson on iterations. We do not further explore generators on this course, but if you are interested to learn more, you can find plenty of
information in the following official documentation.

Useful methods
Data Structures: More on Lists

In this subsection, we will be reviewing some of the useful and important methods that are associated with object of type list. We will make
use of snippets of code that exemplify such methods, in practice. The linked cheatsheet of the methods associated with the built-in arrays in
Python can be helpful.

ADVANCED TOPIC

https://en.wikipedia.org/wiki/Generator_(computer_programming)
http://127.0.0.1:5508/02-input_output.html#varTypes
https://en.wikipedia.org/wiki/Functional_programming
https://docs.python.org/3.6/howto/functional.html#generators
https://docs.python.org/3.6/tutorial/datastructures.html#more-on-lists

Common operations for list, tuple and set arrays in Python.

The methods outlined here are not individually described; however, at this point, you should be able to work out what they do by looking at their
names and respective examples.

Count a specific value within a list:

Extend a list:

table_a = [1, 2, 2, 2]

table_b = [15, 16]

print(table_a.count(2))

PYTHON

3

OUTPUT

Extend a list by adding two lists to each other. Note: adding two lists to each other is not considered an in-place operation:

We can also reverse the values in a list. There are two methods for doing so. Being a generator means that the output of the function is not
evaluated immediately; and instead, we get a generic output. The first of these two methods is:

1. Through an in-place operation using .reverse()

table_a = [1, 2, 2, 2]

table_b = [15, 16]

table_c = table_a.copy() # deep copy.

table_c.extend(table_b)

print(table_a, table_b, table_c)

PYTHON

[1, 2, 2, 2] [15, 16] [1, 2, 2, 2, 15, 16]

OUTPUT

table_a = [1, 2, 2, 2]

table_b = [15, 16]

table_c = table_a + table_b

print(table_a, table_b, table_c)

PYTHON

[1, 2, 2, 2] [15, 16] [1, 2, 2, 2, 15, 16]

OUTPUT

table_a = [1, 2, 2, 2]

table_b = [15, 16]

table_c = table_a.copy() # deep copy.

table_d = table_a + table_b

print(table_c == table_d)

PYTHON

False

OUTPUT

2. And secondly, using reversed() - which is a built-in generator function.

We can, however, force the evaluation process by converting the generator results into a list:

Members of a list may also be sorted in-place, as follows:

table = [1, 2, 2, 2, 15, 16]

table.reverse()

print("Reversed:", table)

PYTHON

Reversed: [16, 15, 2, 2, 2, 1]

OUTPUT

table = [1, 2, 2, 2, 15, 16]

table_rev = reversed(table)

print("Result:", table_rev)

print("Type:", type(table_rev))

PYTHON

Result: <list_reverseiterator object at 0x7f8d0cbc2ef0>

Type: <class 'list_reverseiterator'>

OUTPUT

table_rev_evaluated = list(table_rev)

print('Evaluated:', table_rev_evaluated)

PYTHON

Evaluated: [16, 15, 2, 2, 2, 1]

OUTPUT

table = [16, 2, 15, 1, 2, 2]

table.sort()

print("Sorted (ascending):", table)

PYTHON

Sorted (ascending): [1, 2, 2, 2, 15, 16]

OUTPUT

There is also a further function built into Python: sorted() . This works in a similar manner to reversed() . Also a generator function, it
offers more advanced features that are beyond the scope of this course. You can find out more about it from the official documentation
and examples.

The .sort() method takes an optional keyword argument entitled reverse (default: False). If set to True, the method will perform a
descending sort:

We can also create an empty list, so that we can add members to it later in our code using .append() , or .extend() or other tools:

ADVANCED TOPIC

table = [16, 2, 15, 1, 2, 2]

table.sort(reverse=True)

print("Sorted (descending):", table)

PYTHON

Sorted (descending): [16, 15, 2, 2, 2, 1]

OUTPUT

table = list()

print(table)

PYTHON

[]

OUTPUT

table.append(5)

print(table)

PYTHON

[5]

OUTPUT

https://docs.python.org/3/library/functions.html#sorted
https://docs.python.org/3/howto/sorting.html#sortinghowto

Create a list, and experiment with each of the methods provided in the above example. Try including members of different types in
your list, and see how each of these methods behave.

Solution

This practice exercise was intended to encourage you to experiment with the methods outlined.

Nested Arrays
At this point, you should be comfortable with creating, handling and manipulating arrays of type list, in Python. It is important to have a
foundational understanding of the principles outlined in this section so far, before starting to learn about nested arrays.

We have already established that arrays can contain any value - regardless of type. This means that they can also contain other arrays. An
array that includes at least one member that is, itself, an array is referred to as a nested array. This can be thought of as a table with more than
one column:

another_table = ['Jane', 'Janette']

table.extend(another_table)

print(another_table)

PYTHON

['Jane', 'Janette']

OUTPUT

PRACTICE EXERCISE 13

Arrays can contain values of any type. This rule applies to nested arrays too. We have exclusively included int numbers in our table in
order to simplify the above example.

Implementation
The table can be written in Python as a nested array:

Indexing
The indexing principles for nested arrays are slightly different to those we have familiarised with, up to this point. To retrieve an individual
member in a nested list, we always reference the row index, followed by the column index.

REMEMBER

The list has 3 members, 2 of which

are arrays of type list:

table = [[1, 2, 3], 4, [7, 8]]

print(table)

PYTHON

[[1, 2, 3], 4, [7, 8]]

OUTPUT

We may visualise the process as follows:

To retrieve an entire row, we only need to include the reference for that row. All the values within the row are referenced, implicitly:

and to retrieve a specific member, we include the reference for both the row and column:

We may also extract slices from a nested array. The protocol is identical to normal arrays, described in the previous section of this lesson on
slicing. In nested arrays, however, we may take slices from the columns as well as the rows:

print(table[0])

PYTHON

[1, 2, 3]

OUTPUT

print(table[0][1])

PYTHON

2

OUTPUT

Note that only 2 of the 3 members in table are arrays of type list:

However, there is another member that is not an array:

In most circumstances, we would want all the members in an array to be homogeneous in type — i.e. we want them all to have the same type. In
such cases, we can implement the table as:

print(table[:2])

PYTHON

[[1, 2, 3], 4]

OUTPUT

print(table[0][:2])

PYTHON

[1, 2]

OUTPUT

print(table[0], type(table[0]))

PYTHON

[1, 2, 3] <class 'list'>

OUTPUT

print(table[2], type(table[2]))

PYTHON

[7, 8] <class 'list'>

OUTPUT

print(table[1], type(table[1]))

PYTHON

4 <class 'int'>

OUTPUT

An array with only one member — e.g. [4], is sometimes referred to as a singleton array.

Given the following Table of pathogens and their corresponding diseases:

1. Substitute N/A for None, and create an array to represent the table in its presented order. Retain the array in a variable, and display
the result.

2. Modify the array you created so that its members are sorted descendingly, and display the result.

table = [[1, 2, 3], [4], [7, 8]]

print(table[1], type(table[1]))

PYTHON

[4] <class 'list'>

OUTPUT

PRACTICE EXERCISE 14

Solution

Solution

Dimensions
A nested array is considered two-dimensional or 2D when:

All of its members in a nested array are arrays, themselves;

All sub-arrays are of equal length — i.e. all the columns in the table are filled and have the same number of rows; and,

All members of the sub-arrays are homogeneous in type — i.e. they all have the same type (e.g. int).

disease_pathogen = [

 ["Bacterium", "Negative", "Shigella flexneri" , "Bacillary dysentery"],

 ["Prion", None, "PrP(sc)", "Transmissible spongiform encephalopathies"],

 ["Bacterium", "Negative", "Vibrio cholerae", "Cholera"],

 ["Bacterium", "Negative", "Listeria monocytogenes", "Listeriosis"],

 ["Virus", None, "Hepatitis C", "Hepatitis"],

 ["Bacterium", "Negative", "Helicobacter pylori", "Peptic ulcers"],

 ["Bacterium", "Negative", "Mycobacterium tuberculosis", "Tuberculosis"],

 ["Bacterium", "Negative", "Chlamydia trachomatis", "Chlamydial diseases"],

 ["Virus", None, "Human Immunodeficiency Virus", "Human Immunodeficiency"]

]

print(disease_pathogen)

PYTHON

[['Bacterium', 'Negative', 'Shigella flexneri', 'Bacillary dysentery'], ['Prion', None, 'PrP(sc)', 'Trans

OUTPUT

disease_pathogen.sort(reverse=True)

print(disease_pathogen)

PYTHON

[['Virus', None, 'Human Immunodeficiency Virus', 'Human Immunodeficiency'], ['Virus', None, 'Hepatitis C

OUTPUT

A two dimensional arrays may be visualised as follows:

Nested arrays may, themselves, be nested. This means that, if needed, we can have 3, 4 or n dimensional arrays, too. Analysis and
organisation of such arrays is an important part of a field known as optimisation in computer science and mathematics. Optimisation is
the cornerstone of machine learning, and addresses the problem known as curse of dimensionality.

Such arrays are referred to in mathematics as a matrix. We can therefore represent a two-dimensional array as a mathematical matrix. To that
end, the above array would translate to the annotation displayed in equation below.

The implementation of these arrays is identical to the implementation of other nested arrays. We can therefore code our table in Python as:

ADVANCED TOPIC

table =
⎡

⎣
⎢

1

4

7

2

5

8

3

6

9

⎤

⎦
⎥

table = [

 [1, 2, 3],

 [4, 5, 6],

 [7, 8, 9]

]

print(table)

PYTHON

https://en.wikipedia.org/wiki/Mathematical_optimization
https://en.wikipedia.org/wiki/Curse_of_dimensionality
https://en.wikipedia.org/wiki/Matrix_(mathematics)

[[1, 2, 3], [4, 5, 6], [7, 8, 9]]

OUTPUT

print(table[2])

PYTHON

[7, 8, 9]

OUTPUT

print(table[1][0])

PYTHON

4

OUTPUT

print(table[:2])

PYTHON

[[1, 2, 3], [4, 5, 6]]

OUTPUT

Computers see images as multidimensional arrays (matrices). In its simplest form, an image is a two-dimensional array containing only
two colours.

Given the following black and white image:

1. Considering that black and white squares represent zeros and ones respectively, create a two-dimensional array to represent the
image. Display the results.

2. Create a new array, but this time use False and True to represent black and white respectively.

Display the results.

Solution

PRACTICE EXERCISE 15

cross = [

 [0, 0, 0, 0, 0, 0, 0],

 [0, 1, 0, 0, 0, 1, 0],

 [0, 0, 1, 0, 1, 0, 0],

 [0, 0, 0, 1, 0, 0, 0],

 [0, 0, 1, 0, 1, 0, 0],

 [0, 1, 0, 0, 0, 1, 0],

 [0, 0, 0, 0, 0, 0, 0]

]

print(cross)

PYTHON

[[0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 1, 0], [0, 0, 1, 0, 1, 0, 0], [0, 0, 0, 1, 0, 0, 0], [0, 0, 1, 0,

OUTPUT

Solution

Summary
At this point, you should be familiar with arrays and how they work, in general. Throughout this section, we extensively covered the Python
list, which is one of the language’s most popular types of built-in arrays. We also learned:

How to list from the scratch;

How to manipulate a list using different methods;

How to use indexing and slicing techniques to our advantage;

Mutability — a concept we revisit in the forthcoming lessons;

In-place operations, and the difference between weak references and deep copies;

Nested and multi-dimensional arrays; and,

How to convert other sequences (e.g. str) to list.

Tuple
Data Structures: Tuples and Sequences

Another of Python’s built-in array types is called a tuple. A tuple is an immutable alternative to list. That is, once a tuple has been created, its
contents cannot be modified in any way. Tuples are often used in applications where it is imperative that the contents of an array cannot be
changed.

For instance, we know that in the Wnt signaling pathway, there are two co-receptors. This is final, and would not change at any point in our
program.

cross_bool = [

 [False, False, False, False, False, False, False],

 [False, True, False, False, False, True, False],

 [False, False, True, False, True, False, False],

 [False, False, False, True, False, False, False],

 [False, False, True, False, True, False, False],

 [False, True, False, False, False, True, False],

 [False, False, False, False, False, False, False]

]

print(cross_bool)

PYTHON

[[False, False, False, False, False, False, False], [False, True, False, False, False, True, False], [Fal

OUTPUT

https://docs.python.org/3.6/tutorial/datastructures.html#tuples-and-sequences
http://www.cell.com/cell/fulltext/S0092-8674(12)00586-7

The most common way to implement a tuple in Python, is to place our comma-separated values inside round parentheses: (1, 2, 3, …).
While there is no specific theoretical term for a tuple instantiated with round parentheses, we can refer to this type of tuple as an
explicit tuple.

You can also instantiate a tuple without parentheses, as well: (1, 2, 3, …). In this case, Python acknowledges that a tuple is implied, and
is therefore assumed. Thus, we often refer to this type of tuple as an implicit tuple, and these are created using an operation called
packing.

For the time being, we will be making use of explicit tuples, as they are the clearest and most explicit in annotation, and therefore easiest to
program with and recognise.

Similarly, we can briefly demonstrate that removing round parentheses, or instantiating a implicit tuple, is categorised in the same way, in
Python:

REMEMBER

pathway = 'Wnt Signaling'

coreceptors = ('Frizzled', 'LRP')

print(type(coreceptors))

PYTHON

<class 'tuple'>

OUTPUT

print(coreceptors)

PYTHON

('Frizzled', 'LRP')

OUTPUT

wnt = (pathway, coreceptors)

print(type(wnt))

PYTHON

<class 'tuple'>

OUTPUT

Indexing and slicing principles for a tuple are identical to those of a list, aforementioned in this lesson’s subsections on indexing and slicing.

Conversion to tuple
Similar to list, we can convert other sequences to tuple:

print(wnt)

PYTHON

('Wnt Signaling', ('Frizzled', 'LRP'))

OUTPUT

print(wnt[0])

PYTHON

Wnt Signaling

OUTPUT

numbers_list = [1, 2, 3, 4, 5]

print(type(numbers_list))

PYTHON

<class 'list'>

OUTPUT

numbers = tuple(numbers_list)

print(numbers)

PYTHON

(1, 2, 3, 4, 5)

OUTPUT

print(type(numbers))

PYTHON

<class 'tuple'>

OUTPUT

Immutability
In contrast with list, however, if we attempt to change the contents of a tuple, a TypeError is raised:

Even though tuple is an immutable type, it can contain both mutable and immutable objects:

text = 'This is a string.'

print(type(text))

PYTHON

<class 'str'>

OUTPUT

characters = tuple(text)

print(characters)

PYTHON

('T', 'h', 'i', 's', ' ', 'i', 's', ' ', 'a', ' ', 's', 't', 'r', 'i', 'n', 'g', '.')

OUTPUT

print(type(characters))

PYTHON

<class 'tuple'>

OUTPUT

coreceptors[1] = 'LRP5/6'

PYTHON

TypeError: 'tuple' object does not support item assignment

OUTPUT

(immutable, immutable, immutable, mutable)

mixed_tuple = (1, 2.5, 'abc', (3, 4), [5, 6])

print(mixed_tuple)

PYTHON

and mutable objects inside a tuple may still be changed:

Why and how can we change mutable objects inside a tuple, when a tuple is considered to be an immutable data structure:

Members of a tuple are not directly stored in memory. An immutable value (e.g. an integer: int) has an existing, predefined reference,
in memory. When used in a tuple, it is this reference that is associated with the tuple, and not the value itself. On the other hand, a
mutable object does not have a predefined reference in memory, and is instead created on request somewhere in your computer’s
memory (wherever there is enough free space).

While we can never change or redefine a predefined reference, we can always manipulate something we have defined ourselves. When
we make such an alteration, the location of our mutable object in memory may well change, but its reference — which is what is stored
in a tuple, remains identical. In Python, it is possible to discover the reference an object is using, with the function id(). Upon
experimenting with this function, you will notice that the reference to an immutable object (e.g. an int value) will never change, no
matter how many times you define it in a different context or variable. In contrast, the reference number to a mutable object (e.g. a list)
is changed every time it is defined, even if it contains exactly the same values.

(1, 2.5, 'abc', (3, 4), [5, 6])

OUTPUT

print(mixed_tuple, type(mixed_tuple))

PYTHON

(1, 2.5, 'abc', (3, 4), [5, 6]) <class 'tuple'>

OUTPUT

print(mixed_tuple[4], type(mixed_tuple[4]))

PYTHON

[5, 6] <class 'list'>

OUTPUT

ADVANCED TOPIC

Lists are mutable, so we can alter their values:

mixed_tuple[4][1] = 15

print(mixed_tuple)

PYTHON

Tuples may be empty or have a single value (singleton):

(1, 2.5, 'abc', (3, 4), [5, 15])

OUTPUT

mixed_tuple[4].append(25)

print(mixed_tuple)

PYTHON

(1, 2.5, 'abc', (3, 4), [5, 15, 25])

OUTPUT

We cannot remove the list from the tuple,

but we can empty it by clearing its members:

mixed_tuple[4].clear()

print(mixed_tuple)

PYTHON

(1, 2.5, 'abc', (3, 4), [])

OUTPUT

member_a = tuple()

print(member_a, type(member_a), len(member_a))

PYTHON

() <class 'tuple'> 0

OUTPUT

Empty parentheses also generate an empty tuple.

Remember: we cannot add values to an empty tuple, later.

member_b = ()

print(member_b, type(member_b), len(member_b))

PYTHON

() <class 'tuple'> 0

OUTPUT

Packing and unpacking
As previously discussed, a tuple may also be constructed without parentheses. This is an implicit operation and is known as packing.

Implicit processes must be used sparingly. As always, the more coherent the code, the better it is.

Singleton - Note that it is essential to include

a comma after the value in a single-member tuple:

member_c = ('John Doe',)

print(member_c, type(member_c), len(member_c))

PYTHON

('John Doe',) <class 'tuple'> 1

OUTPUT

If the comma is not included, a singleton tuple

is not constructed:

member_d = ('John Doe')

print(member_d, type(member_d), len(member_d))

PYTHON

John Doe <class 'str'> 8

OUTPUT

REMEMBER

numbers = 1, 2, 3, 5, 7, 11

print(numbers, type(numbers), len(numbers))

PYTHON

(1, 2, 3, 5, 7, 11) <class 'tuple'> 6

OUTPUT

The reverse of this process is known as unpacking. Unpacking is no longer considered an implicit process because it replaces unnamed values
inside an array, with named variables:

Note that for a singleton, we still need to

include the comma.

member = 'John Doe',

print(member, type(member), len(member))

PYTHON

('John Doe',) <class 'tuple'> 1

OUTPUT

dimensions = 14, 17, 12

x, y, z = dimensions

print(x)

PYTHON

14

OUTPUT

print(x, y)

PYTHON

14 17

OUTPUT

member = ('Jane Doe', 28, 'London', 'Student', 'Female')

name, age, city, status, gender = member

print('Name:', name, '- Age:', age)

PYTHON

Name: Jane Doe - Age: 28

OUTPUT

Given:

Unpack protein_info into two distinct variables: protein_name and protein_length.

Solution

There is another type of tuple in Python referred to as a namedtuple. This allows for the members of a tuple to be named
independently (e.g. member.name or member.age), and thereby eliminates the need for unpacking. It was originally implemented by
Raymond Hettinger, one of Python’s core developers, for Python 2.4 (in 2004) but was neglected at the time. It has since gained
popularity as a very useful tool. namedtuple is not a built-in tool, so it is not discussed here. However, it is included in the default library
and is installed as a part of Python. If you are feeling ambitious and would like to learn more, please take a look at the official
documentations and examples. Raymond is also a regular speaker at PyCon (International Python Conferences), recordings of which
are available online. He also often uses his Twitter/X account to talk about small, but important features in Python; which could be
worth throwing him a follow.

Summary
In this section of our Basic Python 2 lesson, we learned about tuple - another type of built-in array within Python, and one which is immutable.
This means that once it is created, the array can no longer be altered. We saw that trying to change the value of a tuple raises a TypeError.
We also established that list and tuple follow an identical indexing protocol, and that they have 2 methods in common: .index()() and
.count() . Finally, we talked about packing and unpacking techniques, and how they improve the quality and legibility of our code.

If you are interested in learning about list and tuple in more depth, have a look at the official documentation of Sequence Types – list, tuple,
range.

Graph theory was initially developed by the renowned Swiss mathematician and logician Leonhard Euler (1707 – 1783). Howeve
graphs, in the sense discussed here, were introduced by the English mathematician James Joseph Sylvester (1814 – 1897).

PRACTICE EXERCISE 16

protein_info = ('GFP', 238)

PYTHON

protein_name, protein_length = protein_info

PYTHON

NOTE

INTERESTING FACT

https://twitter.com/raymondh
https://docs.python.org/3.6/library/collections.html#collections.namedtuple
https://docs.python.org/3.6/library/collections.html#collections.namedtuple
https://docs.python.org/3/library/stdtypes.html#sequence-types-list-tuple-range
https://docs.python.org/3/library/stdtypes.html#sequence-types-list-tuple-range

Exercises

1. We have

table = [[1, 2, 3], ['a', 'b'], [1.5, 'b', 4], [2]]

What is the length of table and why?

Store your answer in a variable and display it using print() .

2. Given the sequence for the Gamma (catalytic) subunit of the Protein Kinase A as:

human_pka_gamma = (

 'MAAPAAATAMGNAPAKKDTEQEESVNEFLAKARGDFLYRWGNPAQNTASSDQFERLRTLGMGSFGRVML'

 'VRHQETGGHYAMKILNKQKVVKMKQVEHILNEKRILQAIDFPFLVKLQFSFKDNSYLYLVMEYVPGGEM'

 'FSRLQRVGRFSEPHACFYAAQVVLAVQYLHSLDLIHRDLKPENLLIDQQGYLQVTDFGFAKRVKGRTWT'

 'LCGTPEYLAPEIILSKGYNKAVDWWALGVLIYEMAVGFPPFYADQPIQIYEKIVSGRVRFPSKLSSDLK'

 'DLLRSLLQVDLTKRFGNLRNGVGDIKNHKWFATTSWIAIYEKKVEAPFIPKYTGPGDASNFDDYEEEEL'

 'RISINEKCAKEFSEF'

)

Using the sequence;

Work out and display the number of Serine (S) residues.

Work out and display the number of Threonine (T) residues.

Calculate and display the total number of Serine and Threonine residues in the following format:

Serine: X

Threonine: X

Create a nested array to represent the following table, and call it :

END OF CHAPTER EXERCISES

3. Explain why in the previous question, we used the term nested instead of two-dimensional in reference to the array? Store your
answer in a variable and display it using print() .

4. Graph theory is a prime object of discrete mathematics utilised for the non-linear analyses of data. The theory is extensively used in
systems biology, and is gaining momentum in bioinformatics too. In essence, a graph is a structure that represents a set of object
(nodes) and the connections between them (edges).

The aforementioned connections are described using a special binary (zero and one) matrix known as the adjacency matrix. The
elements of this matrix indicate whether or not a pair of nodes in the graph are adjacent to one another.

where each row in the matrix represents a node of origin in the graph, and each column a node of destination:

 If the graph maintains a connection (edge) between two

nodes (e.g. between nodes A and B in the graph above), the corresponding value between those nodes would be #1 in the matrix, and if
there are no connections, the corresponding value would #0.

https://en.wikipedia.org/wiki/Graph_theory
https://en.wikipedia.org/wiki/Graph_(discrete_mathematics)
https://en.wikipedia.org/wiki/Adjacency_matrix

Given the following graph:

Determine the adjacency matrix and implement it as a two-dimensional array in Python. Display the final array.

Solution

lists and tuples are 2 types of arrays.

An index is a unique reference to a specific value and Python uses a zero-based indexing system.

lists are mutable because their contents can be modified.

slice() , .pop() , .index() , .remove() and .insert() are some of the key functions used in mutable arrays.

tuples are immutable, which means that their contents cannot be modified.

Content from Iterations

Last updated on 2024-10-28 | Edit this page

Download Chapter PDF

Download Chapter notebook (ipynb)

Mandatory Lesson Feedback Survey

KEY POINTS

OVERVIEW

http://127.0.0.1:5508/05-iterations.html
https://github.com/LearnToDiscover/Basic_Python/edit/main/episodes/05-iterations.Rmd
https://github.com/LearnToDiscover/Basic_Python/edit/main/episodes/05-iterations.Rmd
http://127.0.0.1:5508/05-iterations.pdf
http://127.0.0.1:5508/05-iterations.ipynb
https://docs.google.com/forms/d/e/1FAIpQLSdr0capF7jloJhPH3Pki1B3LZoKOG16poOpuVJ7SL2LkwLHQA/viewform?pli=1

For Loop with Python ListFor Loop with Python List

For Loop through Numpy arrayFor Loop through Numpy array

This chapter assumes that you are familiar with the following concepts in Python:

Questions

What do we mean by iterations and loops?

How are for-loops implemented?

Can conditional statements be used in iterations?

What are while-loops, and how these used?

Objectives

Understanding the concepts behind iterations and loops.

Learning the processes involved in for-loops implementation.

Building conditional statements into loops.

Understanding the concept of while-loops, and when to use them.

https://www.youtube.com/watch?v=40mryCzIBwc
https://www.youtube.com/watch?v=-Ex4JtqhWLw

I/O Operations

Variables and Types

Mathematical Operation

Logical Operations

Indentation Rule

Conditional Statements

Arrays

Additionally, make sure that you are comfortable with the principles of indexing in arrays before commencing this lesson. It is very important that
you have a good understanding of arrays and sequences, because the concept of iteration in programming deals almost exclusively with these
subjects.

You can practice everything in this lesson as you have been doing so far. However, if you find it hard to grasp some of the concepts, do
not worry. It takes practice. To help you with that, Philip Guo from UC San Diego (Calif., USA) has developed PythonTutor.com - an
excellent online tool for learning Python. On that website, write, or paste your code into the editor, and click Visualize Execution. In the
new page, use the forward and back buttons to see a step-by-step graphical visualisation of the processes that occur during the
execution of your code. Try it on the examples in this section.

The concept
We make use of iterations and loops in programming to perform repetitive operations. A repetitive operation is where one or several defined
operations that are repeated multiple times.

For instance, suppose we have a list of 5 numbers as follows:

numbers = [-3, -2, 5, 0, 12]

Now we would like to multiply each number by 2. Based on what we have learned thus far, this is how we would approach this problem:

PREREQUISITE

NOTE

http://127.0.0.1:5508/02-input_output.html#operations
http://127.0.0.1:5508/02-input_output.html#varTypes
http://127.0.0.1:5508/02-input_output.html#math_ops
http://127.0.0.1:5508/02-input_output.html#subsec:logicalOperatons
http://127.0.0.1:5508/03-conditional_statements.html#subsubsec:indentationRule
http://127.0.0.1:5508/03-conditional_statements.html
http://127.0.0.1:5508/04-arrays.html
http://127.0.0.1:5508/04-arrays.html#sec:list:indexing
http://www.pgbovine.net/
http://www.pythontutor.com/visualize.html#mode=edit

Whilst this does the job, it is clearly very tedious. Furthermore, if we have an array of several thousand members, this approach quickly becomes
infeasible.

The process of multiplying individual members of our array by 2 is a very simple example of a repetitive operations.

In programming, there is a universally appreciated golden principle known as the DRY rule; and this is what it stands for:

Don’t Repeat Yourself

So if you find yourself doing something again and again, it is fair to assume that there might a better way of getting the results you’re
looking for.

Some programmers (with questionable motives) have created WET rule too. Find out more about DRY and WET from Wikipedia.

There are some universal tools for iterations that exist in all programming languages — e.g. for and while -loops. There are also other tools
such as vectorisation or generators, that are often unique to one or several specific programming languages.

In this section of the lesson, we will discuss iterations via for and while -loops, and review some real-world examples that may only be
addressed using iterative processes.

for-loops
There is evidence that up to 80% of all conventional iterations are implemented as for -loops. Whether or not it is the best choice in of all these
cases is subject to opinion. What is important, however, is to learn the difference between the two methods, and feel comfortable with how they
work.

Implementation of for -loops in Python is simple compared to other programming languages. It essentially iterates through an existing iterable
variable — (such as an array) and retrieves the values from it one by one, from the beginning through to the end.

numbers = [-3, -2, 5, 0, 12]

numbers[0] *= 2

numbers[1] *= 2

numbers[2] *= 2

numbers[3] *= 2

numbers[4] *= 2

print(numbers)

PYTHON

[-6, -4, 10, 0, 24]

OUTPUT

REMEMBER

https://en.wikipedia.org/wiki/Don%27t_repeat_yourself

In Python, iterable is a term used to refer to a variable that can be iterated through. Any variable type that can be used in a for -loop
without any modifications, is therefore considered an iterable.

Most arrays and sequences are iterable. See Table to find out which native types in Python are iterable. A rule of thumb is that if an
array or a sequence is numerically indexed (e.g. list, tuple, or str), then it is considered an iterable.

Flowchart of a for–loop workflow applied to a list array.

Figure illustrates a flowchart to visualise the workflow of an iterative process using for -loops in Python. The process depicted in the flowchart
may be described as follows:

REMEMBER

http://127.0.0.1:5508/02-input_output.html#fig:nativeTypes

1. A for-loop is initialised using an array or a sequence, and begins its process by sequentially going through the values, starting at
the array’s first row.

2. Iterative Process: The value of the current row is retrieved and given the alias item, which now represents a single variable within
the context of the loop.

3. Repetitive Operation(s): Designated operations are performed using the value of item:

item *= 2

4. Loop Condition: The for -loop automatically checks whether or not it has reached the last row of the sequence. Depending on the
outcome of this check:

NO (last value not reached): Move onto the next row and repeat the process from step 2.

YES (last value reached): Exit the loop.

We write this process in Python as follows:

We can see that the result for each iteration is displayed on a new line. Example outlines other such applications and expands on repetitive
operations that may be simplified using for -loops.

An iterable is a Python variable that contains the built–in method .__iter__(). Methods starting and ending with two underscores
(dunderscores) are also known as magic methods in Python. See the official Python documentations for additional information.

PROCESS

numbers = [3, 5, 6.3, 9, 15, 3.4]

for item in numbers:

 item *= 2

 # Display the item to see the results:

 print(item)

PYTHON

6

10

12.6

18

30

6.8

OUTPUT

ADVANCED TOPIC

https://docs.python.org/3/tutorial/classes.html#iterators

A for -loop is always initialised as:

for variable_name in an_array:

 # An indented block of processes

 # we would like to perform on the

 # members of our array one by one.

where an_array is an iterable variable, and variable_name is the name of the variable we temporarily assign to a member of
an_array that corresponds to the current loop cycle (iteration). The number of loop cycles performed by a for -loop is equal to the
length (number of members) of the array that we are iterating through, which in this case is called an_array.

You can think of each iteration cycle as pulling out a row from the table that is our array (as exemplified in the lesson on arrays) and
temporarily assigning its corresponding value to a variable until the next iteration cycle.

See subsection List Members to find the length of an array.

Given:

write a for -loop to display each item in peptides alongside its index and length. Display the results in the following format:

Peptide XXXX at index X contains X amino acids.

REMEMBER

PRACTICE EXERCISE 1

peptides = [

 'GYSAR',

 'HILNEKRILQAID',

 'DNSYLY'

]

PYTHON

http://127.0.0.1:5508/04-arrays.html
http://127.0.0.1:5508/04-arrays.html#listMem

Solution

for sequence in peptides:

 length = len(sequence)

 index = peptides.index(sequence)

 print('Peptide', sequence, 'at index', index, 'contains', length, 'amino acids.')

PYTHON

Peptide GYSAR at index 0 contains 5 amino acids.

Peptide HILNEKRILQAID at index 1 contains 13 amino acids.

Peptide DNSYLY at index 2 contains 6 amino acids.

OUTPUT

When using a for -loop, we can also reference other variables that have already been defined outside of the loop block:

It is also possible to define new variables inside the loop, but remember that the value of any variables defined inside a loop is reset
with each iteration cycle:

EXTENDED EXAMPLE OF ITERATIONS USING for-LOOPS

numbers = [3, 5, 6.3, 9, 15, 3.4]

counter = 0

for item in numbers:

 item *= 2

 # Display the item to see the results:

 print('Iteration number', counter, ':', item)

 counter += 1

PYTHON

Iteration number 0 : 6

Iteration number 1 : 10

Iteration number 2 : 12.6

Iteration number 3 : 18

Iteration number 4 : 30

Iteration number 5 : 6.8

OUTPUT

numbers = [3, 5, 6.3, 9, 15, 3.4]

counter = 0

for item in numbers:

 new_value = item * 2

 # Display the item to see the results:

 print('Iteration number', counter, ':', item, '* 2 =', new_value)

 counter += 1

PYTHON

Iteration number 0 : 3 * 2 = 6

Iteration number 1 : 5 * 2 = 10

Iteration number 2 : 6.3 * 2 = 12.6

Iteration number 3 : 9 * 2 = 18

Iteration number 4 : 15 * 2 = 30

Iteration number 5 : 3.4 * 2 = 6.8

OUTPUT

Write a for-loop to display the values of a tuple defined as:

such that each protein is displayed on a new line and follows the phrase Protein Kinase X: as in

Protein Kinase 1: PKA

Protein Kinase 2: PKC

and so on.

Solution

Retaining the new values
It is nice to be able to manipulate and display the values of an array but in the majority of cases, we need to retain the new values and use them
later.

In such cases, we have two options:

Create a new array to store our values.
Replace the existing values with the new ones by overwriting them in the same array.

Creating a new array to store our values is very easy. We must firstly create a new list and add values to it with each iteration. In other words,
we start off by creating an empty list; to which we then iteratively add members using the .append() method inside our for -loop. The
process of creating a new list and using the .append() method to values to an existing list are discussed in Useful Methods and mutability,
respectively.

PRACTICE EXERCISE 2

protein_kinases = ('PKA', 'PKC', 'MPAK', 'GSK3', 'CK1')

PYTHON

counter = 1

for protein in protein_kinases:

 print('Protein Kinase ', counter, ': ', protein, sep='')

 counter += 1

PYTHON

Protein Kinase 1: PKA

Protein Kinase 2: PKC

Protein Kinase 3: MPAK

Protein Kinase 4: GSK3

Protein Kinase 5: CK1

OUTPUT

http://127.0.0.1:5508/04-arrays.html#subsubsec:list:usefulMethodsForList
http://127.0.0.1:5508/04-arrays.html#subsubsec:list:mutability

Given:

write a for-loop in which you determine the length of each sequence in peptides, and then store the results as a list of tuple items
as follows:

[('SEQUENCE_1', X), ('SEQUENCE_2', X), ...]

numbers = [-4, 0, 0.3, 5]

new_numbers = list()

for value in numbers:

 squared = value ** 2

 new_numbers.append(squared)

print('numbers:', numbers)

PYTHON

numbers: [-4, 0, 0.3, 5]

OUTPUT

print('new_numbers:', new_numbers)

PYTHON

new_numbers: [16, 0, 0.09, 25]

OUTPUT

PRACTICE EXERCISE 3

peptides = [

 'GYSAR',

 'HILNEKRILQAID',

 'DNSYLY'

]

PYTHON

Solution

The replacement method uses a slightly different approach. Essentially, what we are trying to achieve is:

Read the value of an item in an array;
Manipulate the value via operations;
Return the value back into the original array through item assignment, thereby replacing the existing value.

We learned about modifying an existing value in a list in our discussion of mutability, where we discussed the concept of item assignment. The
process of replacing the original values of an array in a for -loop is identical. An important point to be aware of, however, is that we make use
of the correct index for the specific item in the array that we are trying to modify. Additionally, don’t forget that item assignment is only possible
in mutable arrays such as list. See Table to see which types of array are mutable in Python.

To perform item assignment; we can use a variable to represent the current iteration cycle in our for -loop. We do so by initialising the variable
with a value of 0, and adding 1 to its value at the end of each cycle. We can then use that variable as an index in each iteration cycle:

peptides_with_length = list()

for sequence in peptides:

 length = len(sequence)

 item = (sequence, length)

 peptides_with_length.append(item)

PYTHON

numbers = [-4, 0, 0.5, 5]

Variable representing the

index (iteration cycle):

index = 0

for value in numbers:

 new_value = value ** 5

 # Putting it back into

 # the original array:

 numbers[index] = new_value

 # Adding one to the index for

 # the next iteration cycle:

 index += 1

print(numbers)

PYTHON

[-1024, 0, 0.03125, 3125]

OUTPUT

http://127.0.0.1:5508/04-arrays.html#subsubsec:list:mutability
http://127.0.0.1:5508/02-input_output.html#fig:nativeTypes

The enumerate() function actually returns a generator of tuple items each time it is called in the context of a for-loop. A generator
is, in principle, similar to a normal array; however, unlike an array, the values of a generator are not evaluated by the computer until the
exact time at which they are going to be used. This is an important technique in functional programming known as lazy evaluation. It is
primarily utilised to reduce the workload on the computer (both the processor and the memory) by preventing the execution of
processes that could otherwise be delayed to a later time. In the case of the enumerate() function, the values are evaluated at the
beginning of each iteration cycle in a for-loop. Learn more about lazy evaluation in Wikipedia or read more on generators in Python in
the official documentations.

This is a perfectly valid approach and it is used in many programming languages. However, Python makes this process even easier by
introducing the function enumerate() . We often use this function at the initiation of a for -loop. The function takes an array as an input and as
the name suggests, enumerates them; thereby simplifying the indexing process. The previous example may, therefore, be written more concisely
in Python, as follows:

Given:

Display each item in characters as many times in one line as the index of that item in characters. The results should appear as follows:

2

33

444

ADVANCED TOPIC

numbers = [-4, 0, 0.5, 5]

for index, value in enumerate(numbers):

 # Manipulating the value:

 new_value = value ** 5

 numbers[index] = new_value

print(numbers)

PYTHON

[-1024, 0, 0.03125, 3125]

OUTPUT

PRACTICE EXERCISE 4

characters = ['1', '2', '3', '4']

PYTHON

https://en.wikipedia.org/wiki/Lazy_evaluation
https://docs.python.org/3/howto/functional.html#generators

Solution

for-loop and conditional statements
We can use conditional statements within for -loops to account for and handle different situations.

Suppose we want to find the smallest value (the minimum) within a list of numbers using a for -loop. The workflow of this process is
displayed as a flowchart diagram in figure below.

Given an array, we can break down the problem as follows:

for index, item in enumerate(characters):

 print(item * index)

PYTHON

2

33

444

OUTPUT

Finally, we can implement the process displayed in figure as follows:

numbers = [7, 16, 0.3, 0, 15, -4, 5, 3, 15]

minimum = numbers[0]

for value in numbers:

 if value < minimum:

 minimum = value

print('The minimum value is:', minimum)

PYTHON

The minimum value is: -4

OUTPUT

Given:

Using a for-loop and a conditional statement, find and display the sequences in peptides that contain the amino acid serine (S) in the
following format:

Found S in XXXXX.

Solution

Sequence of numbers in for-loops
In order to produce a sequence of int numbers for use in a for -loop, we can use the built-in range() function. The function takes in three
positional arguments representing start, stop, and step. Note that range() is only capable of producing a sequence of integer numbers.

PRACTICE EXERCISE 5

peptides = [

 'FAEKE',

 'CDYSK',

 'ATAMGNAPAKKDT',

 'YSFQW',

 'KRFGNLR',

 'EKKVEAPF',

 'GMGSFGRVML',

 'YSFQMGSFGRW',

 'YSFQMGSFGRW'

]

PYTHON

target = 'S'

for sequence in peptides:

 if target in sequence:

 print('Found', target, 'in', sequence)

PYTHON

Found S in CDYSK

Found S in YSFQW

Found S in GMGSFGRVML

Found S in YSFQMGSFGRW

Found S in YSFQMGSFGRW

OUTPUT

The range() function does not create the sequence of numbers immediately. Rather, it behaves in a similar way to the enumerate()
function does (as a generator).

Displaying the output of the range() function is not an array of numbers, as you might expect:

It is, however, possible to evaluate the values outside of a for -loop. To do so, we need to convert the output of the function to list or a tuple:

The range() function is non-inclusive. That is, it creates a sequence that starts from and includes the value given as the start
argument, up to but excluding the value of the end argument. For instance, range(1, 5, 1) creates a sequence starting from 1, which is
then incremented 1 step at a time right up to 5, resulting in a sequence that includes the following numbers: 1, 2, 3, 4

REMEMBER

range_generator = range(0, 10, 2)

print(range_generator)

PYTHON

range(0, 10, 2)

OUTPUT

range_sequence = list(range_generator)

print(range_sequence)

PYTHON

[0, 2, 4, 6, 8]

OUTPUT

REMEMBER

EXAMPLE: SEQUENCE COMPARISON, DOT PLOTS AND for LOOPS

while-loops
In our discussion of for loop mediated iterations above, we learned that they are exclusively applied to iterable objects — such as arrays and
sequences. This is because, as demonstrated in workflow figure, at the end of each iteration, the implicit termination condition that is inherent in
the process tests whether or not the end of the sequence being iterating through, has been reached.

It may, however, be deemed necessary to apply iterative processes based on conditions other than those embedded within the for-loop. In such
cases, we use a different class of iterations known as a while-loop.

Consider the following:

We want to ask a user to enter a sequence of exactly five amino acids in single-letter code. If the provided
sequence is more or less than five letters long, we would like to display a message and ask them to try
again; otherwise, we will display the process and terminate the program.

It is impossible to write such a process using a for-loop. This is because when we initialise the iteration process in a for-loop, the number of
loops we need is unknown. In other words, we simply do not know how many times the user would need enter said sequence before they get it
right.

To simplify the understanding of the concept, we can visualise the process in a flowchart, as displayed in figure. In this flowchart, you can see
that the only way to exit the loop is to enter a sequence of exactly five characters. Doing anything else — such as entering a different number of
letters – is equivalent to going back to the beginning of the loop. The process may be described verbally as follows:

1. Initialise the variable sequence and assign an empty string to it.

2. While the length of sequence is not equal to 5:

Ask the user to enter a new sequence.
Go back to step #2.

3. Display the value of sequence.

Implementation
We instantiate while-loop using the while syntax, immediately followed by the loop condition.

We can now implement the process displayed in figure as follows:

sequence = str()

while len(sequence) != 5:

 sequence = input('Enter a sequence of exactly 5 amino acids: ')

print(sequence)

When executed, the above code will prompt the user to enter a value:

Enter a sequence of exactly 5 amino acids: GCGLLY

Enter a sequence of exactly 5 amino acids: GCGL

Enter a sequence of exactly 5 amino acids: GC

Enter a sequence of exactly 5 amino acids: GCGLL

GCGLL

As expected, the user is repetitively asked to enter a five-character sequence until they supply the correct number of letters.

1. Write a script which prompts the user to enter a number, then:

If the second power of the number is smaller than 10, repeat the process and ask again;

If the second power of the number is equal or greater than 10, display the original value and terminate the program.

Hint: Don’t forget to convert the value entered by the user to an appropriate numeric type before you perform any mathematical
operations.

2. We learned in subsection Sequence of Numbers that the built-in function range() may be utilised to produce a sequence of
integer numbers. The function takes 3 input arguments in the following order: stop, start, step.

We now need a sequence of floating-point numbers with the following criteria:

stop = 10

start = 0

step = 0.5

The use of a floating-point number as step means that we cannot use range() to create the desired sequence. Write a script in which
you use a while-loop to produce a sequence of floating-point numbers with the above criteria and display the result.

The resulting sequence must be:

Presented as an instance of type list;

Similar to range() , the sequence must be non-inclusive — i.e. it must include the value of start, but not that of stop.

PRACTICE EXERCISE 6

Solution

value = 0

while value ** 2 < 10:

 response = input('Enter a number: ')

 value = float(response)

print(value)

Solution

stop = 10

start = 0

step = 0.5

number = start

sequence = list()

while number < stop:

 sequence.append(number)

 number += step

print(sequence)

PYTHON

[0, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5, 6.0, 6.5, 7.0, 7.5, 8.0, 8.5, 9.0, 9.5]

OUTPUT

Solution

Breaking a while-loop
Unlike for-loops, it is common to break out of a while-loop, mid-process. This is also known as premature termination.

To consider a situation that may necessitate such an approach, we shall modify our scenario as follows:

We want to ask the user to enter a sequence of exactly five amino acids. If the sequence the user provides
is more or less than five letters long, we would like to display a message and ask them to try again;
otherwise, we will display the sequence and terminate the program. Additionally, the loop should be
terminated: - upon three failed attempts; or, - if the user enters the word exit instead of a five-character
sequence.

In the former case, however, we would also like to display a message and inform the user that we are terminating the programme because of
three failed attempts.

To implement the first addition to our code, we will have to make the following alterations in our code:

Define a variable to hold the iteration cycle, then test its value at the beginning of each cycle to ensure that it is below the designated
threshold. Otherwise, we manually terminate the loop using the break syntax.

Create a conjunctive conditional statement for the while-loop to make, so that it is also sensitive to our exit keyword.

A smarter solution, however, would be:

stop = 10

start = 0

step = 0.5

sequence = [start]

while sequence[-1] < stop - step:

 sequence.append(sequence[-1] + step)

print(sequence)

PYTHON

[0, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5, 6.0, 6.5, 7.0, 7.5, 8.0, 8.5, 9.0, 9.5]

OUTPUT

sequence = str()

counter = 1

max_counter = 3

exit_keyword = 'exit'

while len(sequence) != 5 and sequence != exit_keyword:

 if counter == max_counter:

 sequence = "Three failed attempt - I'm done."

 break

 sequence = input('Enter a sequence of exactly 5 amino acids or [exit]: ')

 counter += 1

print(sequence)

Exercises

1. Can you explain the reason why, in the example given in subsection for-loop and conditional statements we set minimum to be
equal to the first value of our array instead of, for instance, zero or some other number?

Store your answer in a variable and display it using print() .

2. Write a script that using a for -loop, calculates the sum of all numbers in an array defined as follows:

numbers = [0, -2.1, 1.5, 3]

and display the result as:

Sum of the numbers in the array is 2.4

3. Given an array of integer values as:

numbers = [2, 1, 3]

write a script using for -loops, and display each number in the list as many times as the number itself. The program must therefore
display ‘2’ twice, ‘1’ once, and ‘3’ three times.

4. Given a list of numbers defined as:

numbers = [7, 16, 0.3, 0, 15, -4, 5, 3, 15]

write a script that using (at most) two for -loops, finds the variance of the numbers, and display the mean, and the variance. Note that
you will need to calculate the mean as a part of your calculations to find the variance.

The equation for calculating variance is:

Hint: Breaking down the problem into smaller pieces will simplify the process of translating it into code and thereby solving it:

a. Work out the Mean or (the simple average of the numbers):

b. Calculate the sum of: each number () subtracted by the Mean () and square the result.

c. Divide the resulting number by the length of number.

Display the results in the following format:

END OF CHAPTER EXERCISES

=σ2 (− μ∑n
i=1 xi)2

n

μ

μ =
∑n

i=1 xi

n

xi μ

Mean: XXXX

Variance: XXXX

Solution

Iterations and loops are used to perform repetitive operations.

Implementation of for-loops involves four steps.

Conditional statements are used within loops to handle different situations.

while-loops are most suitable when an exact number of conditions/iterations is unknown.

Content from Dictionaries

Last updated on 2024-11-10 | Edit this page

Download Chapter PDF

Download Chapter notebook (ipynb)

Mandatory Lesson Feedback Survey

This chapter assumes that you are familiar with the following concepts in Python:

KEY POINTS

OVERVIEW

Questions

What is a dictionary, in Python?

What are the ways to interact with a dictionary?

Can a dictionary be nested?

Objectives

Understanding the structure of a dictionary.

Accessing data from a dictionary.

Applying nested dictionaries to deal with complex data.

http://127.0.0.1:5508/06-dictionaries.html
https://github.com/LearnToDiscover/Basic_Python/edit/main/episodes/06-dictionaries.Rmd
https://github.com/LearnToDiscover/Basic_Python/edit/main/episodes/06-dictionaries.Rmd
http://127.0.0.1:5508/06-dictionaries.pdf
http://127.0.0.1:5508/06-dictionaries.ipynb
https://docs.google.com/forms/d/e/1FAIpQLSdr0capF7jloJhPH3Pki1B3LZoKOG16poOpuVJ7SL2LkwLHQA/viewform?pli=1

Indentation Rule

Conditional Statements

Arrays

Loops and Iterations

Dictionary
Mapping Types – dict

Google search

StackOverflow python-3.x dictionaries

YouTube Tutorial Dictionaries

Dictionaries are one of the most valuable in-build tools in Python, and are characterised by being able to associate a set of values with a number
of keys.

Think of a paperback dictionary, where we have a range of words together with their definitions. The words are the keys, and the definitions are
the values that are associated with those keys. A Python dictionary works in the same way.

Consider the following scenario:

Suppose we have a number of protein kinases, and we would like to associate them with their descriptions
for future reference.

This is an example of association in arrays. We may visualise this problem as displayed in Figure.

One way to associate the proteins with their definitions would be to make use of nested arrays, as covered in Basic Python 2. However, this
would make it difficult to retrieve the values at a later point in time. This is because in order to retrieve these values, we would need to know the
numerical index at which a given protein is stored, and the level it’s stored at.

As an alternative to using normal arrays in such cases, we can make use of associative arrays. The most common method for constructing an
associative array in Python is to create dictionaries or dict.

PREREQUISITE

http://127.0.0.1:5508/03-conditional_statements.html#subsubsec:indentationRule
http://127.0.0.1:5508/03-conditional_statements.html
http://127.0.0.1:5508/04-arrays.html
http://127.0.0.1:5508/05-iterations.html
https://docs.python.org/3.6/library/stdtypes.html#mapping-types-dict
https://www.google.co.uk/search?q=Dictionaries%20in%20Python%203
https://stackoverflow.com/search?q=python-3.x%20dictionaries&s=78ef2a31-bb79-485b-914d-02db1ab8e9ca
https://www.youtube.com/results?search_query=Python+3+Programming+Tutorial+-+Dictionaries

To implement a dict in Python, we place our entries within curly brackets, separated using a comma. We separate keys and values
using a colon — e.g. {‘key’: ‘value’}. The combination of dictionary key and its associated value is referred to as a dictionary item.

When constructing a long dict with several items that span over several lines, it is not necessary to write one item per line, nor to use
indentations for each item or line. All we need to do is to write key-value pairs as {‘key’: ‘value’} in curly brackets, and separate each pair
using a comma. However, it is good practice to write one item per line and use indentations as it makes it considerably easier to read
the code and understand the hierarchy.

We can therefore implement the diagram displayed in Figure in Python as follows:

REMEMBER

NOTE

protein_kinases = {

 'PKA': 'Involved in regulation of glycogen, sugar, and lipid metabolism.',

 'PKC': 'Regulates signal transduction pathways such as the Wnt pathway.',

 'CK1': 'Controls the function of other proteins through phosphorylation.'

 }

print(protein_kinases)

PYTHON

{'PKA': 'Involved in regulation of glycogen, sugar, and lipid metabolism.', 'PKC': 'Regulates signal transduc

OUTPUT

print(type(protein_kinases))

PYTHON

<class 'dict'>

OUTPUT

Use the Universal Protein Resource (UniProt) database to find the following human proteins:

Axin-1

Rhodopsin

Construct a dictionary for these proteins and the number amino acids within each of them. The keys should represent the name of the
protein. Display the result.

Solution

Now that we have created a dictionary; we can test whether or not a specific key exists our dictionary:

PRACTICE EXERCISE 1

proteins = {

 'Axin-1': 862,

 'Rhodopsin': 348

 }

print(proteins)

PYTHON

{'Axin-1': 862, 'Rhodopsin': 348}

OUTPUT

'CK1' in protein_kinases

PYTHON

True

OUTPUT

'GSK3' in protein_kinases

PYTHON

False

OUTPUT

https://uniprot.org/

Using the dictionary you created in Practice Exercise 1, test to determine whether or not a protein called ERK exists as a key in your
dictionary. Display the result as a Boolean value.

Solution

Interacting with a dictionary
In programming, we have already learned that the more explicit our code is, the better it is. Interacting with dictionaries in Python is very easy,
coherent and explicit. This makes them a powerful tool that we can exploit for different purposes.

In arrays, specifically in list and tuple, we routinely use indexing techniques to retrieve values. In dictionaries, however, we use keys to do
that. Because we can define the keys of a dictionary ourselves, we no longer have to rely exclusively on numeric indices.

As a result, we can retrieve the values of a dictionary using their respective keys as follows:

However, if we attempt to retrieve the value for a key that does not exist in our dict, a KeyError will be raised:

PRACTICE EXERCISE 2

print('ERK' in proteins)

PYTHON

False

OUTPUT

print(protein_kinases['CK1'])

PYTHON

Controls the function of other proteins through phosphorylation.

OUTPUT

'GSK3' in protein_kinases

PYTHON

False

OUTPUT

print(protein_kinases['GSK3'])

PYTHON

Implement a dict to represent the following set of information:

Cystic Fibrosis:

Full Name Gene Type

Cystic fibrosis transmembrane conductance regulator CFTR Membrane
Protein

Using the dictionary you implemented, retrieve and display the gene associated with cystic fibrosis.

Solution

Whilst the values in a dict can be of virtually any type supported in Python, the keys may only be defined using immutable types.

To find out which types are immutable, see Table. Additionally, the keys in a dictionary must be unique.

If we attempt to construct a dict using a mutable value as key, a TypeError will be raised.

For instance, list is a mutable type and therefore cannot be used as a key:

KeyError: 'GSK3'

OUTPUT

PRACTICE EXERCISE 3

cystic_fibrosis = {

 'full name': 'Cystic fibrosis transmembrane conductance regulator',

 'gene': 'CFTR',

 'type': 'Membrane Protein'

 }

print(cystic_fibrosis['gene'])

PYTHON

CFTR

OUTPUT

REMEMBER

http://127.0.0.1:5508/02-input_output.html#fig:nativeTypes

But we can use any immutable type as a key:

If we define a key more than once, the Python interpreter constructs the entry in dict using the last defined instance of that key.

In the following example, we repeat the key ‘pathway’ twice; and as expected, the interpreter only uses the last instance, which in this case
represents the value ‘Canonical’:

test_dict = {

 ['a', 'b']: 'some value'

 }

PYTHON

TypeError: unhashable type: 'list'

OUTPUT

test_dict = {

 'ab': 'some value'

 }

print(test_dict)

PYTHON

{'ab': 'some value'}

OUTPUT

test_dict = {

 ('a', 'b'): 'some value'

 }

print(test_dict)

PYTHON

{('a', 'b'): 'some value'}

OUTPUT

signal = {

 'name': 'Wnt',

 'pathway': 'Non-Canonical', # first instance

 'pathway': 'Canonical' # second instance

 }

print(signal)

PYTHON

Mutability
Like lists, dictionaries are mutable. This means that we can alter the contents of a dictionary, after it has been instantiated. We can make any
alterations to a dictionary as long as we use immutable values for the keys.

Suppose we have a dictionary stored in a variable called protein, holding some information about a specific protein:

We can add new items to our dictionary or alter the existing ones:

We can also alter an existing value in a dictionary using its key. To do so, we simply access the value using its key, and treat it as a normal
variable; the same way we would treat members of a list:

{'name': 'Wnt', 'pathway': 'Canonical'}

OUTPUT

protein = {

 'full name': 'Cystic fibrosis transmembrane conductance regulator',

 'alias': 'CFTR',

 'gene': 'CFTR',

 'type': 'Membrane Protein',

 'common mutations': ['Delta-F508', 'G542X', 'G551D', 'N1303K']

 }

PYTHON

Adding a new item:

protein['chromosome'] = 7

print(protein)

print(protein['chromosome'])

PYTHON

{'full name': 'Cystic fibrosis transmembrane conductance regulator', 'alias': 'CFTR', 'gene': 'CFTR', 'type'

7

OUTPUT

print(protein['common mutations'])

PYTHON

['Delta-F508', 'G542X', 'G551D', 'N1303K']

OUTPUT

protein['common mutations'].append('W1282X')

print(protein)

PYTHON

Implement the following dictionary:

signal = {'name': 'Wnt', 'pathway': 'Non-Canonical'}}

with respect to signal:

Correct the value of pathway to “Canonical”;

Add a new item to the dictionary to represent the receptors for the canonical pathway as “Frizzled” and “LRP”.

Display the altered dictionary as the final result.

Solution

Displaying an entire dictionary using the print() function can look a little messy because it is not properly structured. There is,
however, an external library called pprint (Pretty-Print) that behaves in very similar way to the default print() function, but
structures dictionaries and other arrays in a more presentable way before displaying them. We do not elaborate on Pretty-Print in this
course, but it is a part of Python’s default library, and is therefore installed with Python automatically. To learn more about it, have a
read through the official documentation for the library and review the examples.

Because a dictionary’s keys are immutable, they cannot be altered. However, we can get around this limitation in the following manner. It is
possible to introduce a new key and assigning the values of the old key to this new key. Once we have done this, we can go ahead and remove

{'full name': 'Cystic fibrosis transmembrane conductance regulator', 'alias': 'CFTR', 'gene': 'CFTR', 'type'

OUTPUT

PRACTICE EXERCISE 4

signal = {'name': 'Wnt', 'pathway': 'Non-Canonical'}

signal['pathway'] = 'Canonical'

signal['receptors'] = ('Frizzled', 'LRP')

print(signal)

PYTHON

{'name': 'Wnt', 'pathway': 'Canonical', 'receptors': ('Frizzled', 'LRP')}

OUTPUT

ADVANCED TOPIC

https://docs.python.org/3/library/pprint.html#module-pprint
https://docs.python.org/3/library/pprint.html#example

the old item. The easiest way to remove an item from a dictionary is to use the syntax del :

We can simplify the above operation using the .pop() method, which removes the specified key from a dictionary and returns any values
associated with it:

Creating a new key and assigning to it the

values of the old key:

protein['human chromosome'] = protein['chromosome']

print(protein)

PYTHON

{'full name': 'Cystic fibrosis transmembrane conductance regulator', 'alias': 'CFTR', 'gene': 'CFTR', 'type'

OUTPUT

Now we remove the old item from the dictionary:

del protein['chromosome']

print(protein)

PYTHON

{'full name': 'Cystic fibrosis transmembrane conductance regulator', 'alias': 'CFTR', 'gene': 'CFTR', 'type'

OUTPUT

protein['common mutations in caucasians'] = protein.pop('common mutations')

print(protein)

PYTHON

{'full name': 'Cystic fibrosis transmembrane conductance regulator', 'alias': 'CFTR', 'gene': 'CFTR', 'type'

OUTPUT

Implement a dictionary as:

with respect to signal:

Change the key name from ‘pdb’ to ‘pdb id’ using the .pop() method.

Write a code to find out whether the dictionary:

contains the new key (i.e. ‘pdb id’).

confirm that it no longer contains the old key (i.e. ‘pdb’)

If both conditions are met, display:

Contains the new key, but not the old one.

Otherwise:

Failed to alter the dictionary.

Solution

PRACTICE EXERCISE 5

signal = {'name': 'Beta-Galactosidase', 'pdb': '4V40'}

PYTHON

signal = {

 'name': 'Beta-Galactosidase',

 'pdb': '4V40'

}

signal['pdb id'] = signal.pop('pdb')

if 'pdb id' in signal and 'pdb' not in signal:

 print('Contains the new key, but not the old one.')

else:

 print('Failed to alter the dictionary.')

PYTHON

Contains the new key, but not the old one.

OUTPUT

Nested dictionaries
As explained earlier the section, dictionaries are among the most powerful built-in tools in Python. As we have previously done with arrays, it is
also possible to construct nested dictionaries in order to organise data in a hierarchical fashion. This useful technique is outlined extensively in
example.

It is very easy to implement nested dictionaries:

and we follow similar principles to access, alter or remove the values stored in nested dictionaries:

Parent dictionary

pkc_family = {

 # Child dictionary A:

 'conventional': {

 'note': 'Require DAG, Ca2+, and phospholipid for activation.',

 'types': ['alpha', 'beta-1', 'beta-2', 'gamma']

 },

 # Child dictionary B:

 'atypical': {

 'note': (

 'Require neither Ca2+ nor DAG for'

 'activation (require phosphatidyl serine).'

),

 'types': ['iota', 'zeta']

 }

}

PYTHON

print(pkc_family)

PYTHON

{'conventional': {'note': 'Require DAG, Ca2+, and phospholipid for activation.', 'types': ['alpha', 'beta-1'

OUTPUT

print(pkc_family['atypical'])

PYTHON

{'note': 'Require neither Ca2+ nor DAG foractivation (require phosphatidyl serine).', 'types': ['iota', 'zeta

OUTPUT

print(pkc_family['conventional']['note'])

PYTHON

Require DAG, Ca2+, and phospholipid for activation.

OUTPUT

Implement the following table of genetic disorders as a nested dictionary:

Full Name Gene Type

Cystic fibrosis Cystic fibrosis
transmembrane

conductance
regulator

CFTR Membrane
Protein

Xeroderma pigmentosum A DNA repair
protein

complementing
XP-A cells

XPA Nucleotide
excision
repair

Haemophilia A Haemophilia A F8 Factor VIII
Blood-
clotting
protein

Using the dictionary, display the gene for Haemophilia A.

print(pkc_family['conventional']['types'])

PYTHON

['alpha', 'beta-1', 'beta-2', 'gamma']

OUTPUT

print(pkc_family['conventional']['types'][2])

PYTHON

beta-2

OUTPUT

apkc_types = pkc_family['conventional']['types']

print(apkc_types[1])

PYTHON

beta-1

OUTPUT

PRACTICE EXERCISE 6

Solution

genetic_diseases = {

 'Cystic fibrosis': {

 'name': 'Cystic fibrosis transmembrane conductance regulator',

 'gene': 'CFTR',

 'type': 'Membrane Protein'

 },

 'Xeroderma pigmentosum A': {

 'name': 'DNA repair protein complementing XP-A cells',

 'gene': 'XPA',

 'type': 'Nucleotide excision repair'

 },

 'Haemophilia A': {

 'name': 'Haemophilia A',

 'gene': 'F8',

 'type': 'Factor VIII Blood-clotting protein'

 }

}

print(genetic_diseases['Haemophilia A']['gene'])

PYTHON

F8

OUTPUT

We would like to store and analyse the structure of several proteins involved in the Lac operon - a commonly-studied operon
fundamental to the metabolism and transport of lactose in many species of enteric bacteria. To do so, let’s create a Python dict to help
us organise our data.

Let’s begin by creating an empty dictionary to store our structures:

We then move on to depositing our individual entries to structures by adding new items to it.

Each item has a key that represents the name of the protein we are depositing, and a value that is itself a dictionary consisting of
information regarding the structure of that protein:

Dictionaries don’t have to be homogeneous. In other words, each entry can contain different items within it.

For instance, the ‘LacY’ protein contains an additional key entitled ‘note’:

EXAMPLE: NESTED DICTIONARIES IN PRACTICE

structures = dict()

PYTHON

structures['Beta-Galactosidase'] = {

 'pdb id': '4V40',

 'deposit date': '1994-07-18',

 'organism': 'Escherichia coli',

 'method': 'x-ray',

 'resolution': 2.5,

 'authors': (

 'Jacobson, R.H.', 'Zhang, X.',

 'Dubose, R.F.', 'Matthews, B.W.'

)

}

PYTHON

structures['Lactose Permease'] = {

 'pdb id': '1PV6',

 'deposit data': '2003-06-23',

 'organism': 'Escherichia coli',

 'method': 'x-ray',

 'resolution': 3.5,

 'authors': (

 'Abramson, J.', 'Smirnova, I.', 'Kasho, V.',

 'Verner, G.', 'Kaback, H.R.', 'Iwata, S.'

)

}

PYTHON

The variable structure which is an instance of type dict, is now a nested dictionary:

We know that we can extract information from our nested dict just like we would with any other dict:

structures['LacY'] = {

 'pdb id': '2Y5Y',

 'deposit data': '2011-01-19',

 'organism': 'Escherichia coli',

 'method': 'x-ray',

 'resolution': 3.38,

 'note': 'in complex with an affinity inactivator',

 'authors': (

 'Chaptal, V.', 'Kwon, S.', 'Sawaya, M.R.',

 'Guan, L.', 'Kaback, H.R.', 'Abramson, J.'

)

}

PYTHON

print(structures)

PYTHON

{'Beta-Galactosidase': {'pdb id': '4V40', 'deposit date': '1994-07-18', 'organism': 'Escherichia coli', '

OUTPUT

print(structures['Beta-Galactosidase'])

PYTHON

{'pdb id': '4V40', 'deposit date': '1994-07-18', 'organism': 'Escherichia coli', 'method': 'x-ray', 'reso

OUTPUT

print(structures['Beta-Galactosidase']['method'])

PYTHON

x-ray

OUTPUT

print(structures['Beta-Galactosidase']['authors'])

PYTHON

Sometimes, particularly when creating longer dictionaries, it might be easier to store individual entries in a variable beforehand and add
them to the parent dictionary later on.

Note that our parent dictionary in this case is represented by the variable structure.

We can then use the .update() method to update our structures dictionary:

Sometimes, we need to see what keys our dictionary contains. In order to obtain an array of keys, we use the method .keys() as
follows:

('Jacobson, R.H.', 'Zhang, X.', 'Dubose, R.F.', 'Matthews, B.W.')

OUTPUT

print(structures['Beta-Galactosidase']['authors'][0])

PYTHON

Jacobson, R.H.

OUTPUT

entry = {

 'Lac Repressor': {

 'pdb id': '1LBI',

 'deposit data': '1996-02-17',

 'organism': 'Escherichia coli',

 'method': 'x-ray',

 'resolution': 2.7,

 'authors': (

 'Lewis, M.', 'Chang, G.', 'Horton, N.C.',

 'Kercher, M.A.', 'Pace, H.C.', 'Lu, P.'

)

 }

}

PYTHON

structures.update(entry)

print(structures['Lac Repressor'])

PYTHON

{'pdb id': '1LBI', 'deposit data': '1996-02-17', 'organism': 'Escherichia coli', 'method': 'x-ray', 'reso

OUTPUT

print(structures.keys())

PYTHON

Likewise, we can also obtain an array of values in a dictionary using the .values() method:

We can then extract specific information to conduct an analysis. Note that the len() function in this context returns the number of
keys in the parent dictionary only.

Useful methods for dictionary
Next, we can demonstrate some of the useful methods that are associated with dict in Python.

Given a dictionary as:

dict_keys(['Beta-Galactosidase', 'Lactose Permease', 'LacY', 'Lac Repressor'])

OUTPUT

print(structures['LacY'].values())

PYTHON

dict_values(['2Y5Y', '2011-01-19', 'Escherichia coli', 'x-ray', 3.38, 'in complex with an affinity inacti

OUTPUT

sum_resolutions = 0

res = 'resolution'

sum_resolutions += structures['Beta-Galactosidase'][res]

sum_resolutions += structures['Lactose Permease'][res]

sum_resolutions += structures['Lac Repressor'][res]

sum_resolutions += structures['LacY'][res]

total_entries = len(structures)

average_resolution = sum_resolutions / total_entries

print(average_resolution)

PYTHON

3.0199999999999996

OUTPUT

lac_repressor = {

 'pdb id': '1LBI',

 'deposit data': '1996-02-17',

 'organism': 'Escherichia coli',

 'method': 'x-ray',

 'resolution': 2.7,

}

PYTHON

We can create an array of all items in the dictionary using the .items() method:

Similar to the enumerate() function, the .items() method also returns an array of tuple members. Each tuple itself consists of two
members, and is structured as (‘key’: ‘value’). On that account, we can use its output in the context of a for–loop as follows:

Try .items() on a nested dict, and see how it works.

print(lac_repressor.items())

PYTHON

dict_items([('pdb id', '1LBI'), ('deposit data', '1996-02-17'), ('organism', 'Escherichia coli'), ('method',

OUTPUT

for key, value in lac_repressor.items():

 print(key, value, sep=': ')

PYTHON

pdb id: 1LBI

deposit data: 1996-02-17

organism: Escherichia coli

method: x-ray

resolution: 2.7

OUTPUT

PRACTICE EXERCISE 7

Solution

We learned earlier that if we try to retrieve a key that is not in the dict, a KeyError will be raised. If we anticipate this, we can handle it using
the .get() method. The method takes in the key and searches the dictionary to find it. If found, the associated value is returned. Otherwise, the
method returns None by default. We can also pass a second value to .get() to replace None in cases that the requested key does not exist:

nested_dict = {

 'L1-a': {

 'L2-Ka': 'L2_Va',

 'L2-Kb': 'L2_Vb',

 },

 'L1-b': {

 'L2-Kc': 'L2_Vc',

 'L2-Kd': 'L3_Vd'

 },

 'L3-c': 'L3_V'

}

print(nested_dict.items())

PYTHON

dict_items([('L1-a', {'L2-Ka': 'L2_Va', 'L2-Kb': 'L2_Vb'}), ('L1-b', {'L2-Kc': 'L2_Vc', 'L2-Kd': 'L3_Vd'}

OUTPUT

print(lac_repressor['gene'])

PYTHON

KeyError: 'gene'

OUTPUT

print(lac_repressor.get('gene'))

PYTHON

None

OUTPUT

print(lac_repressor.get('gene', 'Not found...'))

PYTHON

Implement the lac_repressor dictionary and try to extract the values associated with the following keys:

organism

authors

subunits

method

If a key does not exist in the dictionary, display No entry instead.

Display the results in the following format:

organism: XXX

authors: XXX

Solution

Not found...

OUTPUT

PRACTICE EXERCISE 8

lac_repressor = {

 'pdb id': '1LBI',

 'deposit data': '1996-02-17',

 'organism': 'Escherichia coli',

 'method': 'x-ray',

 'resolution': 2.7,

}

requested_keys = ['organism', 'authors', 'subunits', 'method']

for key in requested_keys:

 lac_repressor.get(key, 'No entry')

PYTHON

'Escherichia coli'

'No entry'

'No entry'

'x-ray'

OUTPUT

for-loop and dictionary
Dictionaries and for-loops used together can synergise into a powerful combination. We can leverage the accessibility of dictionary values
through specific keys that we define ourselves in a loop in order to extract data iteratively, and repeatedly.

One of the most useful tools that we can create using nothing more than a for-loop and a dictionary, in only a few lines of code, is a sequence
converter.

Here, we are essentially iterating through a sequence of DNA nucleotides (sequence), extracting one character per loop cycle from our string
(nucleotide). We then use that character as a key to retrieve its corresponding value from our dictionary (dna2rna). Once we get the value, we
add it to the variable that we initialised using an empty string outside the scope of our for-loop (rna_sequence) as discussed here. At the end of
the process, the variable rna_sequence will contain a converted version of our sequence.

sequence = 'CCCATCTTAAGACTTCACAAGACTTGTGAAATCAGACCACTGCTCAATGCGGAACGCCCG'

dna2rna = {"A": "U", "T": "A", "C": "G", "G": "C"}

rna_sequence = str() # Creating an empty string.

for nucleotide in sequence:

 rna_sequence += dna2rna[nucleotide]

print('DNA:', sequence)

print('RNA:', rna_sequence)

PYTHON

DNA: CCCATCTTAAGACTTCACAAGACTTGTGAAATCAGACCACTGCTCAATGCGGAACGCCCG

RNA: GGGUAGAAUUCUGAAGUGUUCUGAACACUUUAGUCUGGUGACGAGUUACGCCUUGCGGGC

OUTPUT

We know that in reverse transcription, RNA nucleotides are converted to their complementary DNA nucleotides as shown:

Type Direction Nucleotides

RNA 5’…’ U A G C

cDNA 5’…’ A T C G

with this in mind:

1. Use the table to construct a dictionary for reverse transcription, and another dictionary for the conversion of cDNA to DNA.

2. Using the appropriate dictionary, convert the following mRNA (exon) sequence for human G protein-coupled receptor to its cDNA.

PRACTICE EXERCISE 9

human_gpcr = (

 'AUGGAUGUGACUUCCCAAGCCCGGGGCGUGGGCCUGGAGAUGUACCCAGGCACCGCGCAGCCUGCGGCCCCCAACACCACCUC'

 'CCCCGAGCUCAACCUGUCCCACCCGCUCCUGGGCACCGCCCUGGCCAAUGGGACAGGUGAGCUCUCGGAGCACCAGCAGUACG'

 'UGAUCGGCCUGUUCCUCUCGUGCCUCUACACCAUCUUCCUCUUCCCCAUCGGCUUUGUGGGCAACAUCCUGAUCCUGGUGGUG'

 'AACAUCAGCUUCCGCGAGAAGAUGACCAUCCCCGACCUGUACUUCAUCAACCUGGCGGUGGCGGACCUCAUCCUGGUGGCCGA'

 'CUCCCUCAUUGAGGUGUUCAACCUGCACGAGCGGUACUACGACAUCGCCGUCCUGUGCACCUUCAUGUCGCUCUUCCUGCAGG'

 'UCAACAUGUACAGCAGCGUCUUCUUCCUCACCUGGAUGAGCUUCGACCGCUACAUCGCCCUGGCCAGGGCCAUGCGCUGCAGC'

 'CUGUUCCGCACCAAGCACCACGCCCGGCUGAGCUGUGGCCUCAUCUGGAUGGCAUCCGUGUCAGCCACGCUGGUGCCCUUCAC'

 'CGCCGUGCACCUGCAGCACACCGACGAGGCCUGCUUCUGUUUCGCGGAUGUCCGGGAGGUGCAGUGGCUCGAGGUCACGCUGG'

 'GCUUCAUCGUGCCCUUCGCCAUCAUCGGCCUGUGCUACUCCCUCAUUGUCCGGGUGCUGGUCAGGGCGCACCGGCACCGUGGG'

 'CUGCGGCCCCGGCGGCAGAAGGCGCUCCGCAUGAUCCUCGCGGUGGUGCUGGUCUUCUUCGUCUGCUGGCUGCCGGAGAACGU'

 'CUUCAUCAGCGUGCACCUCCUGCAGCGGACGCAGCCUGGGGCCGCUCCCUGCAAGCAGUCUUUCCGCCAUGCCCACCCCCUCA'

 'CGGGCCACAUUGUCAACCUCACCGCCUUCUCCAACAGCUGCCUAAACCCCCUCAUCUACAGCUUUCUCGGGGAGACCUUCAGG'

 'GACAAGCUGAGGCUGUACAUUGAGCAGAAAACAAAUUUGCCGGCCCUGAACCGCUUCUGUCACGCUGCCCUGAAGGCCGUCAU'

 'UCCAGACAGCACCGAGCAGUCGGAUGUGAGGUUCAGCAGUGCCGUG'

)

PYTHON

Solution

Q2

Summary
In this section we explored dictionaries: one of the most powerful in-built types in Python. We covered:

How to create dictionaries in Python.
Methods to alter or manipulate both normal and nested dictionaries.
Two different techniques for changing an existing key.
Examples of how dictionaries can organise data and retrieve specific items and entries as and when required.

Finally, we also explored instantiating iterables (discussed here) from dictionary keys or values using the .key() , the .values() , and/or
.items() methods.

Exercises

mrna2cdna = {

 'U': 'A',

 'A': 'T',

 'G': 'C',

 'C': 'G'

}

cdna2dna = {

 'A': 'T',

 'T': 'A',

 'C': 'G',

 'G': 'C'

}

PYTHON

cdna = str()

for nucleotide in human_gpcr:

 cdna += mrna2cdna[nucleotide]

print(cdna)

PYTHON

TACCTACACTGAAGGGTTCGGGCCCCGCACCCGGACCTCTACATGGGTCCGTGGCGCGTCGGACGCCGGGGGTTGTGGTGGAGGGGGCTCGAGTTGGACAGGGTG

OUTPUT

We know that the process of protein translation begins by transcribing a gene from DNA to RNA nucleotides, followed by translating
the RNA codons into protein.

Conventionally, we write DNA sequences from their 5’-end to their 3’-end. The transcription process, however, begins from the 3’-end of
a gene, through to the 5’-end (anti-sense strand), resulting in a sense mRNA sequence complementing the sense DNA strand. This is
because RNA polymerase can only add nucleotides to the 3’-end of the growing mRNA chain, which eliminates the need for the
Okazaki fragments as seen in DNA replication.

Example: The DNA sequence ATGTCTAAA is transcribed into AUGUCUAAA.

Given a conversion table:

and this 5’- to 3’-end DNA sequence of 717 nucleotides for the Green Fluorescent Protein (GFP) mutant 3 extracted from Aequorea
victoria:

Use the DNA sequence and the conversion table to:

1. Write a Python script to transcribe this sequence to mRNA as it occurs in a biological organism. That is, determine the
complimentary DNA first, and use this to produce the mRNA sequence.

2. Use the following dictionary in a Python script to obtain the translation (protein sequence) of the Green Fluorescent Protein using
the mRNA sequence you obtained.

END OF CHAPTER EXERCISES

dna_sequence = (

 'ATGTCTAAAGGTGAAGAATTATTCACTGGTGTTGTCCCAATTTTGGTTGAATTAGATGGTGATGTTAATGGT'

 'CACAAATTTTCTGTCTCCGGTGAAGGTGAAGGTGATGCTACTTACGGTAAATTGACCTTAAAATTTATTTGT'

 'ACTACTGGTAAATTGCCAGTTCCATGGCCAACCTTAGTCACTACTTTCGGTTATGGTGTTCAATGTTTTGCT'

 'AGATACCCAGATCATATGAAACAACATGACTTTTTCAAGTCTGCCATGCCAGAAGGTTATGTTCAAGAAAGA'

 'ACTATTTTTTTCAAAGATGACGGTAACTACAAGACCAGAGCTGAAGTCAAGTTTGAAGGTGATACCTTAGTT'

 'AATAGAATCGAATTAAAAGGTATTGATTTTAAAGAAGATGGTAACATTTTAGGTCACAAATTGGAATACAAC'

 'TATAACTCTCACAATGTTTACATCATGGCTGACAAACAAAAGAATGGTATCAAAGTTAACTTCAAAATTAGA'

 'CACAACATTGAAGATGGTTCTGTTCAATTAGCTGACCATTATCAACAAAATACTCCAATTGGTGATGGTCCA'

 'GTCTTGTTACCAGACAACCATTACTTATCCACTCAATCTGCCTTATCCAAAGATCCAAACGAAAAGAGAGAC'

 'CACATGGTCTTGTTAGAATTTGTTACTGCTGCTGGTATTACCCATGGTATGGATGAATTGTACAAATAA'

)

PYTHON

https://en.wikipedia.org/wiki/Okazaki_fragments
https://en.wikipedia.org/wiki/Green_fluorescent_protein
https://en.wikipedia.org/wiki/Aequorea_victoria
https://en.wikipedia.org/wiki/Aequorea_victoria

Solution

Dictionaries associate a set of values with a number of keys.

Keys are used to access the values of a dictionary.

Dictionaries are mutable.

Nested dictionaries are constructed to organise data in a hierarchical fashion.

Some of the useful methods to work with dictionaries are: .items() , .get()

Content from Functions

Last updated on 2024-11-10 | Edit this page

Download Chapter PDF

Download Chapter notebook (ipynb)

codon2aa = {

 "UUU": "F", "UUC": "F", "UUA": "L", "UUG": "L", "CUU": "L",

 "CUC": "L", "CUA": "L", "CUG": "L", "AUU": "I", "AUC": "I",

 "AUA": "I", "GUU": "V", "GUC": "V", "GUA": "V", "GUG": "V",

 "UCU": "S", "UCC": "S", "UCA": "S", "UCG": "S", "AGU": "S",

 "AGC": "S", "CCU": "P", "CCC": "P", "CCA": "P", "CCG": "P",

 "ACU": "T", "ACC": "T", "ACA": "T", "ACG": "T", "GCU": "A",

 "GCC": "A", "GCA": "A", "GCG": "A", "UAU": "Y", "UAC": "Y",

 "CAU": "H", "CAC": "H", "CAA": "Q", "CAG": "Q", "AAU": "N",

 "AAC": "N", "AAA": "K", "AAG": "K", "GAU": "D", "GAC": "D",

 "GAA": "E", "GAG": "E", "UGU": "C", "UGC": "C", "UGG": "W",

 "CGU": "R", "CGC": "R", "CGA": "R", "CGG": "R", "AGA": "R",

 "AGG": "R", "GGU": "G", "GGC": "G", "GGA": "G", "GGG": "G",

 "AUG": "<Met>", "UAA": "<STOP>", "UAG": "<STOP>", "UGA": "<STOP>"

}

PYTHON

KEY POINTS

OVERVIEW

Questions

What are functions?

How are functions created?

What are optional arguments?

http://127.0.0.1:5508/07-functions.html
https://github.com/LearnToDiscover/Basic_Python/edit/main/episodes/07-functions.Rmd
https://github.com/LearnToDiscover/Basic_Python/edit/main/episodes/07-functions.Rmd
http://127.0.0.1:5508/07-functions.pdf
http://127.0.0.1:5508/07-functions.ipynb

Function to create a dictionaryFunction to create a dictionary

Transcription FunctionTranscription Function

Covariance FunctionCovariance Function

What makes functions so powerful?

Objectives

Understand how to develop and utilise functions.

Understanding different ways of creating functions.

Explaining input arguments.

Understanding the interconnectivity of functions.

https://www.youtube.com/watch?v=hcvGRK8FvQ8
https://www.youtube.com/watch?v=_Y6ucZYbVL4
https://www.youtube.com/watch?v=on_v5Ge80iE

This chapter assumes that you are familiar with the following concepts in Python:

Mathematical Operation

Indentation Rule

Conditional Statements

Arrays

Loops and Iterations

Functions
Defining Functions

In programming, functions are individual units or blocks of code that incorporate and perform specific tasks in a sequence defined and written by
the programmer. As we learned in the first chapter (on outputs), a function usually takes in one or several variables or values, processes them,
and produces a specific result. The variable(s) given to a function and those produced by it are referred to as input arguments, and outputs
respectively.

There are different ways to create functions in Python. In the L2D, we will be using def to implement our functions. This is the simplest and
most common method for declaring a function. The structure of a typical function defined using def is as follows:

PREREQUISITE

http://127.0.0.1:5508/02-input_output.html#math_ops
http://127.0.0.1:5508/03-conditional_statements.html#subsubsec:indentationRule
http://127.0.0.1:5508/03-conditional_statements.html
http://127.0.0.1:5508/04-arrays.html
http://127.0.0.1:5508/05-iterations.html
https://docs.python.org/3/tutorial/controlflow.html#defining-functions
http://127.0.0.1:5508/02-input_output.html#sub:ProducingAnOutput

There are several points to remember relative to functions:

The name of a function follows same principles as that of any other variable as discussed in variable names. The name must be in
lower-case characters.

The input arguments of a function — e.g. value_a and value_b in the above example; are essentially variables whose scope is the
function. That is, they are only accessible within the function itself, and not from anywhere else in the code.

Variables defined within a function, should never use the same name as variables defined outside of it; or they may override each
other.

A function declared using def should always be terminated with a return syntax. Any values or variables that follow return
are regarded as the function’s output.

If we do not specify a return value, or fail to terminate a function using return altogether, the Python interpreter will automatically
terminate that function with an implicit return None. Being an implicit process, this is generally regarded as a bad practice and
should be avoided.

We implement functions to avoid repetition in our code. It is important that a function is only performing a very specific task, so that it can be
context-independent. You should therefore avoid incorporating separable tasks inside a single function.

REMEMBER

http://127.0.0.1:5508/02-input_output.html#subsec:variableNames

Functions are designed to perform specific tasks. That is why in the majority of cases, they are named using verbs — e.g. add() or
print() . Verbs describe an action, a state, or an occurrence in the English language. Likewise, this type of nomenclature describes the

action performed by a specific function. As we encourage with variable naming: sensible, short and descriptive names are best to
consider, when naming a function.

Once you start creating functions for different purposes, you will eventually amass a library of ready-to-use functions which can individually
address different needs. This is the primary principle of a popular programming paradigm known as functional programming.

So let us implement the example outline in the diagram:

Once implemented, we can call and use the function we created. We can do so in the same way as we do with the built-in functions such as
max() or print() :

INTERESTING FACT

def add(value_a, value_b):

 """

 Calculates the sum of two numeric values

 given as inputs.

 :param value_a: First value.

 :type value_a: int, float

 :param value_b: Second value.

 :type value_b: int, float

 :return: Sum of the two values.

 :rtype: int, float

 """

 result = value_a + value_b

 return result

PYTHON

res = add(2, 5)

print(res)

PYTHON

7

OUTPUT

https://en.wikipedia.org/wiki/Functional_programming

When calling a function, we should always pass our positional input arguments in the order they are defined in the function definition:
i.e. from left to right.

This is because in the case of positional arguments, as the name suggests, the Python interpreter relies on the position of each value to
identify its variable name in the function signature. The function signature for our add function is as follows:

add(value_a, value_b)

So in the above example where we say add(2, 5), the value 2 is identified as the input argument for value_a, and not value_b. This
happens automatically because in our function call, the value 2 is written in the first position: the position at which value_a is defined in
our function declaration (signature).

Alternatively, we can use the name of each input argument to pass values onto them in any order. When we use the name of the input argument
explicitly, we pass the values as keyword arguments. This is particularly useful in more complex functions where there are several input
arguments.

Let us now use keyword arguments to pass values to our add() function:

Now, even if we change the order of our arguments, the function would still be able to associate the values to the correct keyword argument:

REMEMBER

res = add(value_a=2, value_b=5)

print(res)

PYTHON

7

OUTPUT

res = add(value_b=2, value_a=5)

print(res)

PYTHON

7

OUTPUT

Choose the order of your input argument wisely. This is important when your function can accept multiple input arguments.

Suppose we want to define a ‘division’ function. It makes sense to assume that the first number passed to the function will be divided by
the second number:

It is also much less likely for someone to use keywords to pass arguments to this function – that is, to say:

than it is for them to use positional arguments (without any keywords), that is:

But if we use an arbitrary order, then we risk running into problems:

In which case, our function would perform perfectly well if we use keyword arguments; however, if we rely on positional arguments and
common sense, then the result of the division would be calculated incorrectly.

REMEMBER

def divide(a, b):

 return a / b

PYTHON

result = divide(a=2, b=4)

PYTHON

result = divide(2, 4)

PYTHON

def divide_bad(denominator, numerator):

 return numerator / denominator

PYTHON

result_a = divide_bad(numerator=2, denominator=4)

result_b = divide_bad(2, 4)

print(result_a == result_b)

PYTHON

False

OUTPUT

Implement a function called find_tata that takes in one str argument called seq and looks for the TATA-box motif inside that sequence.
Then:

if found, the function should return the index for the TATA-box as output.

if not found, the function should explicitly return None.

Example:

The function should behave, as follows:

sequence = 'GCAGTGTATAGTC'

res = find_tata(sequence)

Solution

Documentation
It is essential to write short, informative documentation for a functions that you are defining. There is no single correct way to document a code.
However, as a general rule, a sufficiently informative documentation should tell us:

what a function does;

the names of the input arguments, and what type each argument should be;

the output, and its type.

This documentation string is referred to as the docstring. It is always written inside triple quotation marks. The docstring must be implemented
on the very first line, immediately following the declaration of the function, in order for it to be recognised as documentation:

PRACTICE EXERCISE 1

def find_tata(seq):

 tata_box = 'TATA'

 result = seq.find(tata_box)

 return result

PYTHON

You might feel as though you would remember what your own functions do. Assuming this is often naive, however, as it is easy to forget
the specifics of a function that you have written; particularly if it is complex and accepts multiple arguments. Functions that we
implement tend to perform specialist, and often complex, interconnected processes. Whilst you might remember what a specific
function does for a few days after writing it, you will likely have trouble remembering the details in a matter of months. And that is not
even considering details regarding the type of the input argument(s) and those of the output. In addition, programmers often share their
work with other fellow programmers; be it within their team or in the wider context of a publication, or even for distribution via public
repositories, as a community contribution. Whatever the reason, there is one golden rule: a function should not exist unless it is
documented.

Writing the docstring on the first line is important. Once a function is documented, we can use help() , which is a built-in function in Python, to
access the documentations as follows:

For very simple functions – like the add() function that we implemented above, it is sufficient to simplify the docstring into something
straightforward, and concise. This is because it is fairly obvious what are the input and output arguments are, and what their respective types

def add(value_a, value_b):

 """

 Calculates the sum of two numeric values

 given as inputs.

 :param value_a: First value.

 :type value_a: int, float

 :param value_b: Second value.

 :type value_b: int, float

 :return: Sum of the two values.

 :rtype: int, float

 """

 result = value_a + value_b

 return result

PYTHON

REMEMBER

help(add)

PYTHON

Help on function add in module __main__:

add(value_a, value_b)

 Calculates the sum of two numeric values

 given as inputs.

 :param value_a: First value.

 :type value_a: int, float

 :param value_b: Second value.

 :type value_b: int, float

 :return: Sum of the two values.

 :rtype: int, float

OUTPUT

are/should be. For example:

Re-implement the function you defined in the previous Practice Exercise 1 with appropriate documentation.

Solution

Optional arguments
We already know that most functions accept one or more input arguments. Sometimes a function does not need all of the arguments in order to
perform a specific task.

Such an example that we have already worked with is print() . We already know that this function may be utilised to display text on the
screen. However, we also know that if we use the file argument, it will behave differently in that it will write the text inside a file instead of

def add(value_a, value_b):

 """value_a + value_b -> number"""

 result = value_a + value_b

 return result

PYTHON

help(add)

PYTHON

Help on function add in module __main__:

add(value_a, value_b)

 value_a + value_b -> number

OUTPUT

PRACTICE EXERCISE 2

def find_tata(seq):

 """

 Finds the location of the TATA-box,

 if one exists, in a polynucleotide

 sequence.

 :param seq: Polynucleotide sequence.

 :type seq: str

 :return: Start of the TATA-box.

 :rtype: int

 """

 tata_box = 'TATA'

 result = seq.find(tata_box)

 return result

PYTHON

displaying it on the screen. Additionally, print() has other arguments such as sep or end, which have specific default values of ’ ’ (a single
space) and \n (a linebreak) respectively.

Input arguments that are necessary to call a specific function are referred to as non-default arguments. Those whose definition is not
mandatory for a function to be called are known as default or optional arguments.

Optional arguments may only be defined after non-default arguments (if any). If this order is not respected, a SyntaxError will be
raised.

The default value defined for optional arguments can theoretically be an instance of any type in Python. However, it is better and safer
to only use immutable types (as demonstrated in Table) for default values. The rationale behind this principle is beyond the scope of this
course, but you can read more about it in the official documentation.

In order to define functions with optional arguments, we need to assign a default value to them. Remember: input arguments are variables with
a specific scope. As a result, we can treat our input argument as variables and assign them a value:

Now if we don’t explicitly define upper when calling prepare_seq() , its value is automatically considered to be False:

REMEMBER

ADVANCED TOPIC

def prepare_seq(seq, name, upper=False):

 """

 Prepares a sequence to be displayed.

 :param seq: Sequence

 :type seq: str

 :param name: Name of the sequence.

 :type name: str

 :param upper: Convert sequence to uppercase characters (default: False)

 :type upper: bool

 :return: Formatted string containing the sequence.

 :rtype: str

 """

 template = 'The sequence of {} is: {}'

 if not upper:

 response = template.format(name, seq)

 else:

 seq_upper = seq.upper()

 response = template.format(name, seq_upper)

 return response

PYTHON

http://127.0.0.1:5508/02-input_output.html#tb:types:nativeTypes
https://docs.python.org/3/tutorial/controlflow.html#default-argument-values

If we change the default value of False for upper and set to True, our sequence should be converted to upper case characters:

Modify the function from the previous Practice Exercise 2 to accept an optional argument called upper, with a default value of False.
Thereafter:

if upper is False, then the function should perform as it already does (similar to the previous Practice Exercise 2);

if upper is True, then the function should convert the sequence to contain only uppercase characters, before it looks for the TATA-
box.

Do not forget to update the docstring of your function.

sequence = 'TagCtGC'

prepped = prepare_seq(sequence, 'DNA')

print(prepped)

PYTHON

The sequence of DNA is: TagCtGC

OUTPUT

prepped = prepare_seq(sequence, 'DNA', upper=True)

print(prepped)

PYTHON

The sequence of DNA is: TAGCTGC

OUTPUT

PRACTICE EXERCISE 3

Solution

It is not necessary to implement your functions in this way. It is, however, a common practice among programmers in any programming
language. For this reason, you should be at least be familiar with the technique, as you will likely encounter it at some point.

It is important to note that it is also possible to have more than one return in a function. This is useful when we need to account for different
outcomes; such as the one we saw in the previous example with prepare_seq() .

This means that we can simplify the process as follows:

def find_tata(seq, upper=False):

 """

 Finds the location of the TATA-box,

 if one exists, in a polynucleotide

 sequence.

 :param seq: Polynucleotide sequence.

 :type seq: str

 :param upper: Whether or not to

 homogenise the sequence

 to upper-case characters.

 :type upper: bool

 :return: Start of the TATA-box.

 :rtype: int

 """

 tata_box = 'TATA'

 if not upper:

 result = seq.find(tata_box)

 else:

 seq_prepped = seq.upper()

 result = seq_prepped.find(tata_box)

 return result

PYTHON

REMEMBER

Notice that we got rid of response. Here is a description of what is happening:

In this context, if the conditional statement holds — i.e. when upper is False— we enter the if block. In this case, we reach the first
return statement. It is at this point, that function returns the corresponding results, and immediately terminates.

Conversely, if the conditional statement does not hold — i.e. where upper is True — we skip the if block altogether and proceed. It is only
then that we arrive at the second return statement where the alternative set of results are prepared.

This does not alter the functionality of the function, in any way. However, in complex functions which can be called repetitively (e.g. inside for
loop), this technique may improve the performance of the function.

Now if we call our function, it will behave in exactly the same way as it did before:

def prepare_seq(seq, name, upper=False):

 """

 Prepares a sequence to be displayed.

 :param seq: Sequence

 :type seq: str

 :param name: Name of the sequence.

 :type name: str

 :param upper: Convert sequence to uppercase characters (default: False)

 :type upper: bool

 :return: Formated string containing the sequence.

 :rtype: str

 """

 template = 'The sequence of {} is: {}'

 if not upper:

 return template.format(name, seq)

 seq_upper = seq.upper()

 return template.format(name, seq_upper)

PYTHON

sequence = 'TagCtGC'

prepped = prepare_seq(sequence, 'DNA')

print(prepped)

PYTHON

The sequence of DNA is: TagCtGC

OUTPUT

prepped = prepare_seq(sequence, 'DNA', upper=True)

print(prepped)

PYTHON

Interconnectivity of functions
Functions can also call other functions. This is what makes them extremely powerful tools that may be utilised to address an unlimited number
of problems.

This allows us to devise a network of functions that can all call each other to perform different tasks at different times. This network of functions
can then collectively contribute to the production of a single, final answer.

Functions should have specialist functionalities.They should ideally be written to perform one task, and one task only.

So in instances where more operations are required, it is advised not to write more code to execute these, into one function. This would
defy the ethos of functional programming. Instead, consider writing more functions that contain less code, and perform more specialist
functionalities.

The sequence of DNA is: TAGCTGC

OUTPUT

REMEMBER

Now that we have function to calculate the mean, we can go ahead and write a function to calculate the variance; which itself relies on
mean:

EXAMPLE: A MINI TOOLBOX FOR STATISTICS

def mean(arr):

 """

 Calculates the mean of an array.

 :param arr: Array of numbers.

 :type arr: list, tuple, set

 :return: Mean of the values in the array.

 :rtype: float

 """

 summation = sum(arr)

 length = len(arr)

 result = summation / length

 return result

PYTHON

Now we have two functions, which can be used to calculate the variance, or the mean, for any array of numbers.

Remember that testing a function is inherent to successful design. So let’s test our functions

Now that we have a function to calculate the variance, we can easily proceed to calculate the standard deviation, as well.

The standard deviation is calculated from the square root of variance. We can easily implement this in a new function as follows:

def variance(arr):

 """

 Calculates the variance of an array.

 :param arr: Array of numbers.

 :type arr: list, tuple, set

 :return: Variance of the values in the array.

 :rtype: float

 """

 arr_mean = mean(arr)

 denominator = len(arr)

 numerator = 0

 for num in arr:

 numerator += (num - arr_mean) ** 2

 result = numerator / denominator

 return result

PYTHON

numbers = [1, 5, 0, 14.2, -23.344, 945.23, 3.5e-2]

PYTHON

numbers_mean = mean(numbers)

print(numbers_mean)

PYTHON

134.58871428571427

OUTPUT

numbers_variance = variance(numbers)

print(numbers_variance)

PYTHON

109633.35462420408

OUTPUT

Now let’s see how it works, in practice:

Write a function that — given an array of any values — produces a dictionary containing the values within the array as keys, and the
count of those values in the original array (their frequencies), as values.

Example:

For the following array:

the function should return the above dictionary:

Suggestion: You can add this as a new tool to the statistics mini toolbox.

def stan_dev(arr):

 """

 Calculates the standard deviation of an array.

 :param arr: Array of numbers.

 :type arr: list, tuple, set

 :return: Standard deviation of the values in the array.

 :rtype: float

 """

 from math import sqrt

 var = variance(arr)

 result = sqrt(var)

 return result

PYTHON

numbers_std = stan_dev(numbers)

print(numbers_std)

PYTHON

331.1092789762982

OUTPUT

PRACTICE EXERCISE 4

values = [1, 1.3, 1, 1, 5, 5, 1.3, 'text', 'text', 'something']

PYTHON

Solution

Exercises

def count_values(arr):

 """

 Converts an array into a dictionary of

 the unique members (as keys) and their

 counts (as values).

 :param arr: Array containing repeated

 members.

 :type arr: list, tuple

 :return: Dictionary of unique members

 with counts.

 :rtype: dict

 """

 unique = set(arr)

 arr_list = list(arr)

 result = dict()

 for num in unique:

 result[num] = arr_list.count(num)

 return result

PYTHON

Write a function with the following features:

Call the function get_basic_stats() and let it take one input argument which may contain any number of input arrays, e.g. a tuple
of arrays.

Using a for loop, for each of the arrays calculate the mean and the variance for each of the arrays using the functions ‘mean’ and
‘variance’, given above, i.e. call these functions from within the function get_basic_stats() .

Calculate the standard deviation for each array as the square root of the variance. You will have to import the function sqrt from
module math.

Return a single array containing (in that order) the mean, the variance and the standard deviation for each array.

To test the function, combine three arrays in a tuple as follows:

Call the function get_basic_stats() with this tuple as an argument, and write the output to a variable. Display the results in the
following form:

STD of array' index, ':' STD

The result for the above arrays should be:

STD of array 0 : 1.4142135623730951

STD of array 1 : 0.0

STD of array 2 : 0.14357537702854514

Solution

END OF CHAPTER EXERCISES

my_arrays = (

 [1, 2, 3, 4, 5],

 [7, 7, 7, 7],

 [1.0, 0.9, 1.2, 1.12, 0.95, 0.76],

)

PYTHON

Functions can help to make repetitive tasks efficient, allowing the passing of values into whole blocks of code, with a simple
function call.

Keyword def is used to write a function.

Optional arguments do not require prior definition.

The potential interconnectivity of functions can make them very powerful.

KEY POINTS

